GCD Computation of n Integers
Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of \(n\) integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers.
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autor: | |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
25.07.2014
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of \(n\) integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1407.6794 |