Inverse Scattering and the Geroch Group

We study the integrability of gravity-matter systems in D=2 spatial dimensions with matter related to a symmetric space G/K using the well-known linear systems of Belinski-Zakharov (BZ) and Breitenlohner-Maison (BM). The linear system of BM makes the group structure of the Geroch group manifest and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Katsimpouri, Despoina, Kleinschmidt, Axel, Virmani, Amitabh
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 26.09.2013
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the integrability of gravity-matter systems in D=2 spatial dimensions with matter related to a symmetric space G/K using the well-known linear systems of Belinski-Zakharov (BZ) and Breitenlohner-Maison (BM). The linear system of BM makes the group structure of the Geroch group manifest and we analyse the relation of this group structure to the inverse scattering method of the BZ approach in general. Concrete solution generating methods are exhibited in the BM approach in the so-called soliton transformation sector where the analysis becomes purely algebraic. As a novel example we construct the Kerr-NUT solution by solving the appropriate purely algebraic Riemann-Hilbert problem in the BM approach.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1211.3044