Inverse Scattering and the Geroch Group
We study the integrability of gravity-matter systems in D=2 spatial dimensions with matter related to a symmetric space G/K using the well-known linear systems of Belinski-Zakharov (BZ) and Breitenlohner-Maison (BM). The linear system of BM makes the group structure of the Geroch group manifest and...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
26.09.2013
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study the integrability of gravity-matter systems in D=2 spatial dimensions with matter related to a symmetric space G/K using the well-known linear systems of Belinski-Zakharov (BZ) and Breitenlohner-Maison (BM). The linear system of BM makes the group structure of the Geroch group manifest and we analyse the relation of this group structure to the inverse scattering method of the BZ approach in general. Concrete solution generating methods are exhibited in the BM approach in the so-called soliton transformation sector where the analysis becomes purely algebraic. As a novel example we construct the Kerr-NUT solution by solving the appropriate purely algebraic Riemann-Hilbert problem in the BM approach. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1211.3044 |