A Bichromatic Incidence Bound and an Application

We prove a new, tight upper bound on the number of incidences between points and hyperplanes in Euclidean d-space. Given n points, of which k are colored red, there are O_d(m^{2/3}k^{2/3}n^{(d-2)/3} + kn^{d-2} + m) incidences between the k red points and m hyperplanes spanned by all n points provide...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Lund, Ben D, Purdy, George B, Smith, Justin W
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 27.04.2011
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We prove a new, tight upper bound on the number of incidences between points and hyperplanes in Euclidean d-space. Given n points, of which k are colored red, there are O_d(m^{2/3}k^{2/3}n^{(d-2)/3} + kn^{d-2} + m) incidences between the k red points and m hyperplanes spanned by all n points provided that m = \Omega(n^{d-2}). For the monochromatic case k = n, this was proved by Agarwal and Aronov. We use this incidence bound to prove that a set of n points, no more than n-k of which lie on any plane or two lines, spans \Omega(nk^2) planes. We also provide an infinite family of counterexamples to a conjecture of Purdy's on the number of hyperplanes spanned by a set of points in dimensions higher than 3, and present new conjectures not subject to the counterexample.
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1006.3878