Gaussian Process Regression for Materials and Molecules

We provide an introduction to Gaussian process regression (GPR) machine-learning methods in computational materials science and chemistry. The focus of the present review is on the regression of atomistic properties: in particular, on the construction of interatomic potentials, or force fields, in t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemical reviews Ročník 121; číslo 16; s. 10073
Hlavní autoři: Deringer, Volker L, Bartók, Albert P, Bernstein, Noam, Wilkins, David M, Ceriotti, Michele, Csányi, Gábor
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 25.08.2021
ISSN:1520-6890, 1520-6890
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We provide an introduction to Gaussian process regression (GPR) machine-learning methods in computational materials science and chemistry. The focus of the present review is on the regression of atomistic properties: in particular, on the construction of interatomic potentials, or force fields, in the Gaussian Approximation Potential (GAP) framework; beyond this, we also discuss the fitting of arbitrary scalar, vectorial, and tensorial quantities. Methodological aspects of reference data generation, representation, and regression, as well as the question of how a data-driven model may be validated, are reviewed and critically discussed. A survey of applications to a variety of research questions in chemistry and materials science illustrates the rapid growth in the field. A vision is outlined for the development of the methodology in the years to come.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-6890
1520-6890
DOI:10.1021/acs.chemrev.1c00022