Consistent Volumetric Discretizations Inside Self-Intersecting Surfaces

Decades of research have culminated in a robust geometry processing pipeline for surfaces. Most steps in this pipeline, like deformation, smoothing, subdivision and decimation, may create self‐intersections. Volumetric processing of solid shapes then becomes difficult, because obtaining a correct vo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 32; číslo 5; s. 147 - 156
Hlavní autoři: Sacht, Leonardo, Jacobson, Alec, Panozzo, Daniele, Schüller, Christian, Sorkine-Hornung, Olga
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.08.2013
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Decades of research have culminated in a robust geometry processing pipeline for surfaces. Most steps in this pipeline, like deformation, smoothing, subdivision and decimation, may create self‐intersections. Volumetric processing of solid shapes then becomes difficult, because obtaining a correct volumetric discretization is impossible: existing tet‐meshing methods require watertight input. We propose an algorithm that produces a tetrahedral mesh that overlaps itself consistently with the self‐intersections in the input surface. This enables volumetric processing on self‐intersecting models. We leverage conformalized mean‐curvature flow, which removes self‐intersections, and define an intrinsically similar reverse flow, which prevents them. We tetrahedralize the resulting surface and map the mesh inside the original surface. We demonstrate the effectiveness of our method with applications to automatic skinning weight computation, physically based simulation and geodesic distance computation.
Bibliografie:ArticleID:CGF12181
ark:/67375/WNG-D5P2QLMB-2
istex:74B2EFDDE1062DA37457E9E822BB945412034BFD
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12181