Petrophysical data prediction from seismic attributes using committee fuzzy inference system

This study presents an intelligent model based on fuzzy systems for making a quantitative formulation between seismic attributes and petrophysical data. The proposed methodology comprises two major steps. Firstly, the petrophysical data, including water saturation ( S w ) and porosity, are predicted...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & geosciences Ročník 35; číslo 12; s. 2314 - 2330
Hlavní autori: Kadkhodaie-Ilkhchi, Ali, Rezaee, M. Reza, Rahimpour-Bonab, Hossain, Chehrazi, Ali
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 01.12.2009
Elsevier
Predmet:
ISSN:0098-3004, 1873-7803
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This study presents an intelligent model based on fuzzy systems for making a quantitative formulation between seismic attributes and petrophysical data. The proposed methodology comprises two major steps. Firstly, the petrophysical data, including water saturation ( S w ) and porosity, are predicted from seismic attributes using various fuzzy inference systems (FISs), including Sugeno (SFIS), Mamdani (MFIS) and Larsen (LFIS). Secondly, a committee fuzzy inference system (CFIS) is constructed using a hybrid genetic algorithms-pattern search (GA-PS) technique. The inputs of the CFIS model are the outputs and averages of the FIS petrophysical data. The methodology is illustrated using 3D seismic and petrophysical data of 11 wells of an Iranian offshore oil field in the Persian Gulf. The performance of the CFIS model is compared with a probabilistic neural network (PNN). The results show that the CFIS method performed better than neural network, the best individual fuzzy model and a simple averaging method.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0098-3004
1873-7803
DOI:10.1016/j.cageo.2009.04.010