Wearable Potentiometric Ion Patch for On-Body Electrolyte Monitoring in Sweat: Toward a Validation Strategy to Ensure Physiological Relevance
Herein, the reproducibility and a double validation of on-body measurements provided by new wearable potentiometric ion sensors (WPISs) is presented. Sweat collected during sport practice was first analyzed using the developed device, the pH-meter, and ion chromatography (IC) prior to on-body measur...
Uloženo v:
| Vydáno v: | Analytical chemistry (Washington) Ročník 91; číslo 13; s. 8644 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
02.07.2019
|
| ISSN: | 1520-6882, 1520-6882 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Herein, the reproducibility and a double validation of on-body measurements provided by new wearable potentiometric ion sensors (WPISs) is presented. Sweat collected during sport practice was first analyzed using the developed device, the pH-meter, and ion chromatography (IC) prior to on-body measurements (off-site validation). Subsequently, the accuracy of on-body measurements accomplished by the WPISs was evaluated by comparison with pH-meter readings and IC after collecting sweat (every 10-12.5 min) during sport practice. The developed device contains sensors for pH, Cl
, K
, and Na
that are embedded in a flexible sampling cell for sweat analysis. The electrode array was fabricated employing MWCNTs (as an ion-to-electron transducer) and stretchable materials that have been exhaustively characterized in terms of analytical performance, presenting Nernstian slopes within the expected physiological range of each ion analyte (Cl
, 10-100 mM; K
, 10-10 mM; and Na
, 10-100 mM and pH, 4.5-7.5), drift suitable for midterm exercise practice (0.3 ± 0.2 mV h
), fast response time, adequate selectivity for sweat measurements, and excellent reversibility. Besides that, the designed sampling cell avoids any sweat contamination and evaporation issues while supplying a passive sweat flow encompassing specifically the individual's perspiration. The interpretation of ion concentration profiles may permit the identification of personal dynamic patterns in sweat composition while practicing sport. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| ISSN: | 1520-6882 1520-6882 |
| DOI: | 10.1021/acs.analchem.9b02126 |