Best practices for missing data management in counseling psychology

This article urges counseling psychology researchers to recognize and report how missing data are handled, because consumers of research cannot accurately interpret findings without knowing the amount and pattern of missing data or the strategies that were used to handle those data. Patterns of miss...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of counseling psychology Ročník 57; číslo 1; s. 1
Hlavní autori: Schlomer, Gabriel L, Bauman, Sheri, Card, Noel A
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.01.2010
Predmet:
ISSN:0022-0167
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article urges counseling psychology researchers to recognize and report how missing data are handled, because consumers of research cannot accurately interpret findings without knowing the amount and pattern of missing data or the strategies that were used to handle those data. Patterns of missing data are reviewed, and some of the common strategies for dealing with them are described. The authors provide an illustration in which data were simulated and evaluate 3 methods of handling missing data: mean substitution, multiple imputation, and full information maximum likelihood. Results suggest that mean substitution is a poor method for handling missing data, whereas both multiple imputation and full information maximum likelihood are recommended alternatives to this approach. The authors suggest that researchers fully consider and report the amount and pattern of missing data and the strategy for handling those data in counseling psychology research and that editors advise researchers of this expectation.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-0167
DOI:10.1037/a0018082