2,7-disubstituted amidofluorenone derivatives as inhibitors of human telomerase

Telomerase is a major new target for the rational design of novel anticancer agents. We have previously identified anthraquinone-based molecules capable of inhibiting telomerase by stabilizing G-quadruplex structures formed by the folding of telomeric DNA. In the present study we describe the synthe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of medicinal chemistry Ročník 42; číslo 14; s. 2679 - 2684
Hlavní autoři: Perry, PJ, Read, MA, Davies, RT, Gowan, SM, Reszka, AP, Wood, AA, Kelland, LR, Neidle, S
Médium: Journal Article
Jazyk:angličtina
Vydáno: WASHINGTON Amer Chemical Soc 15.07.1999
Témata:
ISSN:0022-2623, 1520-4804
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Telomerase is a major new target for the rational design of novel anticancer agents. We have previously identified anthraquinone-based molecules capable of inhibiting telomerase by stabilizing G-quadruplex structures formed by the folding of telomeric DNA. In the present study we describe the synthesis and biological evaluation of a series of analogous fluorenone-based compounds with the specific aims of, first, determining if the anthraquinone chromophore is a prerequisite for activity and, second, whether the conventional cytotoxicity inherent to anthraquinone-based molecules may be reduced by rational design. This fluorenone series of compounds exhibits a broad range of telomerase inhibitory activity, with the most potent inhibitors displaying levels of activity (8-12 mu M) comparable with other classes of G-quadruplex-interactive agents. Comparisons with analogous anthraquinone-based compounds reveal a general reduction in the level of cellular cytotoxicity. Molecular modeling techniques have been used to compare the interaction of fluorenone- and analogous anthraquinone-based inhibitors with a human G-quadruplex structure and to rationalize their observed biological activities.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2623
1520-4804
DOI:10.1021/jm990084q