Generalized linear differential equation using Hyers-Ulam stability approach
In this paper, we study the Hyers-Ulam stability with respect to the linear differential condition of fourth order. Specifically, we treat ${\psi}$ as an interact arrangement of the differential condition, i.e., where ${\psi} \in c^4 [{\ell}, {\mu}], {\Psi} \in [{\ell}, {\mu}]$. We demonstrate that...
Gespeichert in:
| Veröffentlicht in: | AIMS mathematics Jg. 6; H. 2; S. 1607 - 1623 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
AIMS Press
01.01.2021
|
| Schlagworte: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we study the Hyers-Ulam stability with respect to the linear differential condition of fourth order. Specifically, we treat ${\psi}$ as an interact arrangement of the differential condition, i.e., where ${\psi} \in c^4 [{\ell}, {\mu}], {\Psi} \in [{\ell}, {\mu}]$. We demonstrate that ${\psi}^{iv} ({\varkappa}) + {\xi}_1 {\psi}{'''} ({\varkappa})+ {\xi}_2 {\psi}{''} ({\varkappa}) + {\xi}_3 {\psi}' ({\varkappa}) + {\xi}_4 {\psi}({\varkappa}) = {\Psi}({\varkappa})$ has the Hyers-Ulam stability. Two examples are provided to illustrate the usefulness of the proposed method. |
|---|---|
| ISSN: | 2473-6988 2473-6988 |
| DOI: | 10.3934/math.2021096 |