Patching rainfall data using regression methods. 3. Grouping, patching and outlier detection

Rainfall data are used, amongst other things, for augmenting or repairing streamflow records in a water resources analysis environment. Gaps in rainfall records cause problems in the construction of water-balance models using monthly time-steps, when it becomes necessary to estimate missing values....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) Jg. 198; H. 1; S. 319 - 334
1. Verfasser: Pegram, Geoffrey
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.11.1997
Schlagworte:
ISSN:0022-1694, 1879-2707
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rainfall data are used, amongst other things, for augmenting or repairing streamflow records in a water resources analysis environment. Gaps in rainfall records cause problems in the construction of water-balance models using monthly time-steps, when it becomes necessary to estimate missing values. Modest extensions are sometimes also desirable. It is also important to identify outliers as possible erroneous data and to group data which are hydrologically similar in order to accomplish good patching. Algorithms are described which accomplish these tasks using the covariance biplot, multiple linear regression, singular value decomposition and the pseudo-Expectation-Maximization algorithm.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-1694
1879-2707
DOI:10.1016/S0022-1694(96)03284-2