Patching rainfall data using regression methods. 3. Grouping, patching and outlier detection

Rainfall data are used, amongst other things, for augmenting or repairing streamflow records in a water resources analysis environment. Gaps in rainfall records cause problems in the construction of water-balance models using monthly time-steps, when it becomes necessary to estimate missing values....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of hydrology (Amsterdam) Ročník 198; číslo 1; s. 319 - 334
Hlavný autor: Pegram, Geoffrey
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.1997
Predmet:
ISSN:0022-1694, 1879-2707
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Rainfall data are used, amongst other things, for augmenting or repairing streamflow records in a water resources analysis environment. Gaps in rainfall records cause problems in the construction of water-balance models using monthly time-steps, when it becomes necessary to estimate missing values. Modest extensions are sometimes also desirable. It is also important to identify outliers as possible erroneous data and to group data which are hydrologically similar in order to accomplish good patching. Algorithms are described which accomplish these tasks using the covariance biplot, multiple linear regression, singular value decomposition and the pseudo-Expectation-Maximization algorithm.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-1694
1879-2707
DOI:10.1016/S0022-1694(96)03284-2