Printable Smart Materials and Devices: Strategies and Applications
Smart materials are a kind of functional materials which can sense and response to environmental conditions or stimuli from optical, electrical, magnetic mechanical, thermal, and chemical signals, etc. Patterning of smart materials is the key to achieving large-scale arrays of functional devices. Ov...
Saved in:
| Published in: | Chemical reviews Vol. 122; no. 5; p. 5144 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
09.03.2022
|
| Subjects: | |
| ISSN: | 1520-6890, 1520-6890 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Smart materials are a kind of functional materials which can sense and response to environmental conditions or stimuli from optical, electrical, magnetic mechanical, thermal, and chemical signals, etc. Patterning of smart materials is the key to achieving large-scale arrays of functional devices. Over the last decades, printing methods including inkjet printing, template-assisted printing, and 3D printing are extensively investigated and utilized in fabricating intelligent micro/nano devices, as printing strategies allow for constructing multidimensional and multimaterial architectures. Great strides in printable smart materials are opening new possibilities for functional devices to better serve human beings, such as wearable sensors, integrated optoelectronics, artificial neurons, and so on. However, there are still many challenges and drawbacks that need to be overcome in order to achieve the controllable modulation between smart materials and device performance. In this review, we give an overview on printable smart materials, printing strategies, and applications of printed functional devices. In addition, the advantages in actual practices of printing smart materials-based devices are discussed, and the current limitations and future opportunities are proposed. This review aims to summarize the recent progress and provide reference for novel smart materials and printing strategies as well as applications of intelligent devices. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ISSN: | 1520-6890 1520-6890 |
| DOI: | 10.1021/acs.chemrev.1c00303 |