Towards Interpretable Physical‐Conceptual Catchment‐Scale Hydrological Modeling Using the Mass‐Conserving‐Perceptron

We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water resources research Ročník 60; číslo 10
Hlavní autoři: Wang, Yuan‐Heng, Gupta, Hoshin V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington John Wiley & Sons, Inc 01.10.2024
Wiley
Témata:
ISSN:0043-1397, 1944-7973
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell‐states and flow paths) that represents the dominant processes that can explain the input‐state‐output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a “HyMod Like” architecture with three cell‐states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input‐bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi‐directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for properly selecting and designing the training metrics based on information‐theoretic foundations that are better suited to extracting information across the full range of flow dynamics. This study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. Plain Language Summary We show that conventional machine learning technologies can be used to develop parsimonious, interpretable, catchment‐scale hydrologic models using the mass‐conserving perceptron (MCP) as a fundamental computational unit. Using data from the Leaf River Basin, we test a variety of minimal, dominant process, representations that can explain the input‐state‐output dynamics of the catchment. Our results demonstrate the importance of using multiple diagnostic metrics for evaluation and comparison of different model architectures, and highlight the importance of choosing (or designing) objective functions for model training that are properly suited to the task of extracting information across the full range of flow dynamics. This depth‐focus study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. Key Points We utilize mass‐conserving perceptron (MCP) directed‐graph architectures to develop concise, interpretable catchment‐scale hydrologic models We focus on model complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments This study set the stage for interpretable MCP‐based modeling to find minimal representations in different hydroclimatic regimes
AbstractList We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell‐states and flow paths) that represents the dominant processes that can explain the input‐state‐output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a “HyMod Like” architecture with three cell‐states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input‐bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi‐directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for properly selecting and designing the training metrics based on information‐theoretic foundations that are better suited to extracting information across the full range of flow dynamics. This study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes.
Abstract We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell‐states and flow paths) that represents the dominant processes that can explain the input‐state‐output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a “HyMod Like” architecture with three cell‐states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input‐bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi‐directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for properly selecting and designing the training metrics based on information‐theoretic foundations that are better suited to extracting information across the full range of flow dynamics. This study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes.
We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell‐states and flow paths) that represents the dominant processes that can explain the input‐state‐output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a “ HyMod Like ” architecture with three cell‐states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input‐bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi‐directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for properly selecting and designing the training metrics based on information‐theoretic foundations that are better suited to extracting information across the full range of flow dynamics. This study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. We show that conventional machine learning technologies can be used to develop parsimonious, interpretable, catchment‐scale hydrologic models using the mass‐conserving perceptron (MCP) as a fundamental computational unit. Using data from the Leaf River Basin, we test a variety of minimal, dominant process, representations that can explain the input‐state‐output dynamics of the catchment. Our results demonstrate the importance of using multiple diagnostic metrics for evaluation and comparison of different model architectures, and highlight the importance of choosing (or designing) objective functions for model training that are properly suited to the task of extracting information across the full range of flow dynamics. This depth‐focus study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. We utilize mass‐conserving perceptron (MCP) directed‐graph architectures to develop concise, interpretable catchment‐scale hydrologic models We focus on model complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments This study set the stage for interpretable MCP‐based modeling to find minimal representations in different hydroclimatic regimes
We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell‐states and flow paths) that represents the dominant processes that can explain the input‐state‐output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a “HyMod Like” architecture with three cell‐states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input‐bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi‐directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for properly selecting and designing the training metrics based on information‐theoretic foundations that are better suited to extracting information across the full range of flow dynamics. This study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. Plain Language Summary We show that conventional machine learning technologies can be used to develop parsimonious, interpretable, catchment‐scale hydrologic models using the mass‐conserving perceptron (MCP) as a fundamental computational unit. Using data from the Leaf River Basin, we test a variety of minimal, dominant process, representations that can explain the input‐state‐output dynamics of the catchment. Our results demonstrate the importance of using multiple diagnostic metrics for evaluation and comparison of different model architectures, and highlight the importance of choosing (or designing) objective functions for model training that are properly suited to the task of extracting information across the full range of flow dynamics. This depth‐focus study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. Key Points We utilize mass‐conserving perceptron (MCP) directed‐graph architectures to develop concise, interpretable catchment‐scale hydrologic models We focus on model complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments This study set the stage for interpretable MCP‐based modeling to find minimal representations in different hydroclimatic regimes
Author Gupta, Hoshin V.
Wang, Yuan‐Heng
Author_xml – sequence: 1
  givenname: Yuan‐Heng
  orcidid: 0000-0002-9360-6639
  surname: Wang
  fullname: Wang, Yuan‐Heng
  email: yhwang0730@gmail.com, YuanHengWang@lbl.gov, yhwang0730@arizona.edu
  organization: Earth and Environmental Sciences Area
– sequence: 2
  givenname: Hoshin V.
  surname: Gupta
  fullname: Gupta, Hoshin V.
  organization: The University of Arizona
BookMark eNp9kc9u1DAQhyNUJLaFGw8QiQsHAv6XODmiCOhKraiWVj1aE3uym5U3Xmwv1Uoc-gh9Rp4EhyCEKsHFln_zzWdbc5qdjG7ELHtJyVtKWPOOESZuV4RLxsSTbEEbIQrZSH6SLQgRvKC8kc-y0xC2hFBRVnKRfb92d-BNyJdjRL_3GKGzmF9tjmHQYH_cP7Ru1LiPB7B5C1FvdjjGFH9JVczPj8Y769YTm186g3YY1_lNmNa4wfwSQpgdAf23lKbDFfpJ6N34PHvagw344vd-lt18_HDdnhcXnz8t2_cXBYhK1oVpEJuKVb0BDlrzihBempJ0na6RN50QVBAjG5bKRpC-QgNdD7KmYDpDgZ9ly9lrHGzV3g878EflYFC_AufXCnwctEXFjNDIO0ZJU4madcCSpBLMdCjLSkyu17Nr793XA4aodkPQaC2M6A5BcVryWnAp64S-eoRu3cGP6aeJYlRIKuoyUW9mSnsXgsf-zwMpUdNY1d9jTTh7hOshQhzcGD0M9l9NfG66Gywe_3uBul21KyaFqPlPgyW70g
CitedBy_id crossref_primary_10_1093_jrsssc_qlaf009
crossref_primary_10_1029_2023WR036461
Cites_doi 10.1007/978-981-16-5501-2_7
10.1029/2022WR034118
10.1016/j.jhydrol.2023.130141
10.1029/WR019i001p00251
10.5194/hess‐18‐463‐2014
10.1038/s41467‐018‐03629‐7
10.1016/j.aej.2021.04.100
10.1002/hyp.9660
10.1029/95WR01955
10.1002/2013WR01509
10.1038/s41586‐019‐0912‐1
10.1162/106365602320169811
10.5194/hess‐23‐4323‐2019
10.1029/2019WR026065
10.1029/2020WR028338
10.1038/s41586‐024‐07145‐1
10.1007/s11831‐022‐1003‐4
10.1162/tacl_a_00489
10.1029/2022WR033918
10.1029/2011WR011044
10.1016/j.envsoft.2023.105779
10.31223/OSF.IO/53TE4
10.1029/WR019i001p00260
10.5194/gmd‐2023‐190
10.1029/2022WR032404
10.5194/hess‐28‐945‐2024
10.1061/(ASCE)1084‐0699(1999)4:2(135)
10.1029/2007WR006735
10.1002/2014WR015895
10.1029/2023WR036461
10.1016/j.envsoft.2023.105831
10.1016/j.jhydrol.2009.08.003
10.1029/92WR02617
10.1137/1.9781611975673.63
10.1029/2019WR024922
10.1162/neco.1997.9.8.1735
10.1109/TAI.2022.3200028
10.1080/09715010.2018.1556124
10.5194/hess‐28‐4187‐2024
10.5194/hess‐28‐2705‐2024
10.1371/journal.pone.0145180
10.1029/2019WR026471
10.1111/1752‐1688.12586
10.1029/WR019i001p00269
10.1038/470316a
10.1029/2020WR029328
10.1111/1752‐1688.12964
10.1029/2022WR034352
10.1016/j.jhydrol.2022.128618
10.1029/2021WR031818
10.5194/hess‐26‐5085‐2022
10.1016/j.envsoft.2023.105730
10.1038/s41467‐021‐26176‐w
10.1029/2022WR033684
10.1002/wat2.1386
10.1029/2010WR010174
10.1016/j.jhydrol.2023.129666
10.5194/hess‐27‐2357‐2023
10.1029/91WR02985
10.1029/2008WR007327
10.1016/j.envsoft.2020.104728
10.1029/2023WR036710
10.1080/02626667.2013.803183
10.5194/gmd‐15‐3417‐2022
10.1029/2021WR030394
10.1623/hysj.48.6.857.51421
10.1029/2020GL088229
10.1038/s43247‐023‐00751‐3
10.1038/s41561‐021‐00865‐3
10.5194/hess‐27‐1‐2023
10.1029/2021WR031033
10.1029/2022WR033168
10.1002/wrcr.20161
10.1029/2019WR024918
10.5194/hess‐22‐6005‐2018
10.1038/s41597‐023‐01975‐w
10.2166/nh.2010.007
10.1029/2021WR031548
10.1016/S0022‐1694(03)00225‐7
10.5194/hess‐27‐139‐2023
10.1029/97WR03495
10.1214/aos/1176344136
10.1029/2008JD010636
10.1029/2019WR026793
10.1029/2023WR035803
10.1016/j.jhydrol.2020.124700
10.1029/2020WR027948
10.5194/hess‐17‐1161‐2013
10.1029/WR021i004p00473
10.5194/hess‐23‐5089‐2019
10.1038/s43017‐023‐00178‐5
10.1109/tac.1974.1100705
10.1016/j.jhydrol.2022.128340
10.1029/2021WR030185
10.1029/2019GL085722
ContentType Journal Article
Copyright 2024. The Author(s).
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s).
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOA
DOI 10.1029/2024WR037224
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2d4ce3b21096482ba21ad642dbe7564a
10_1029_2024WR037224
WRCR27448
Genre researchArticle
GrantInformation_xml – fundername: University of Arizona
– fundername: Australian Centre of Excellence for Climate System Science
  funderid: CE110001028
– fundername: University of Arizona Data Science Institute
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a4678-d9ee9626fda3acc360035d50bbc8e39b44140d792a3ad40f6edabfa781adbd1a3
IEDL.DBID 24P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001330837300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Tue Oct 14 19:08:31 EDT 2025
Tue Aug 05 11:36:51 EDT 2025
Sat Aug 23 05:21:03 EDT 2025
Sat Nov 29 08:11:33 EST 2025
Tue Nov 18 20:51:13 EST 2025
Wed Jan 22 17:13:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4678-d9ee9626fda3acc360035d50bbc8e39b44140d792a3ad40f6edabfa781adbd1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9360-6639
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR037224
PQID 3121471485
PQPubID 105507
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_2d4ce3b21096482ba21ad642dbe7564a
proquest_miscellaneous_3153843778
proquest_journals_3121471485
crossref_primary_10_1029_2024WR037224
crossref_citationtrail_10_1029_2024WR037224
wiley_primary_10_1029_2024WR037224_WRCR27448
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
20241001
2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_12_1_103_1
e_1_2_12_1_93_1
e_1_2_12_1_70_1
e_1_2_12_1_51_1
e_1_2_12_1_74_1
e_1_2_12_1_55_1
e_1_2_12_1_78_1
e_1_2_12_1_29_1
e_1_2_12_1_25_1
e_1_2_12_1_48_1
e_1_2_12_1_21_1
e_1_2_12_1_44_1
e_1_2_12_1_5_1
e_1_2_12_1_40_1
e_1_2_12_1_9_1
e_1_2_12_1_107_1
Schrunner S. (e_1_2_12_1_97_1) 2023
e_1_2_12_1_114_1
e_1_2_12_1_81_1
e_1_2_12_1_110_1
e_1_2_12_1_62_1
e_1_2_12_1_66_1
Nash J. E. (e_1_2_12_1_75_1) 1957; 3
e_1_2_12_1_18_1
e_1_2_12_1_14_1
e_1_2_12_1_37_1
Lee K. H. (e_1_2_12_1_69_1) 2018
e_1_2_12_1_33_1
e_1_2_12_1_118_1
e_1_2_12_1_102_1
e_1_2_12_1_90_1
e_1_2_12_1_52_1
e_1_2_12_1_94_1
e_1_2_12_1_56_1
e_1_2_12_1_79_1
e_1_2_12_1_98_1
e_1_2_12_1_28_1
e_1_2_12_1_47_1
e_1_2_12_1_24_1
e_1_2_12_1_43_1
Burnash R. J. (e_1_2_12_1_11_1) 1973
e_1_2_12_1_6_1
e_1_2_12_1_20_1
Peck E. L. (e_1_2_12_1_85_1) 1976
e_1_2_12_1_106_1
e_1_2_12_1_113_1
Hoedt P. J. (e_1_2_12_1_46_1) 2021
e_1_2_12_1_63_1
e_1_2_12_1_86_1
Elsken T. (e_1_2_12_1_19_1) 2019; 20
e_1_2_12_1_67_1
Pagano T. C. (e_1_2_12_1_82_1) 2016
e_1_2_12_1_17_1
Aghakouchak A. (e_1_2_12_1_2_1) 2010; 26
e_1_2_12_1_36_1
e_1_2_12_1_13_1
e_1_2_12_1_32_1
e_1_2_12_1_117_1
e_1_2_12_1_101_1
e_1_2_12_1_91_1
e_1_2_12_1_3_1
Yang Y. (e_1_2_12_1_116_1) 2023
e_1_2_12_1_53_1
e_1_2_12_1_95_1
e_1_2_12_1_76_1
e_1_2_12_1_57_1
e_1_2_12_1_99_1
Quiñones M. P. (e_1_2_12_1_89_1) 2021
e_1_2_12_1_27_1
Kingma D. P. (e_1_2_12_1_59_1) 2014
Liu D. (e_1_2_12_1_71_1) 2017
e_1_2_12_1_23_1
Liu H. (e_1_2_12_1_72_1) 2018
e_1_2_12_1_42_1
e_1_2_12_1_7_1
e_1_2_12_1_109_1
e_1_2_12_1_105_1
e_1_2_12_1_112_1
e_1_2_12_1_60_1
e_1_2_12_1_64_1
e_1_2_12_1_87_1
e_1_2_12_1_16_1
e_1_2_12_1_39_1
Boyle D. P. (e_1_2_12_1_10_1) 2000
Gupta H. V. (e_1_2_12_1_35_1) 2003
e_1_2_12_1_12_1
Khatami S. (e_1_2_12_1_58_1) 2020
e_1_2_12_1_31_1
LeCun Y. (e_1_2_12_1_68_1) 1988; 1
Rumelhart D. E. (e_1_2_12_1_92_1) 2013
e_1_2_12_1_50_1
e_1_2_12_1_73_1
e_1_2_12_1_96_1
e_1_2_12_1_4_1
e_1_2_12_1_54_1
e_1_2_12_1_77_1
e_1_2_12_1_49_1
e_1_2_12_1_26_1
e_1_2_12_1_45_1
e_1_2_12_1_22_1
e_1_2_12_2_2_1
e_1_2_12_1_41_1
e_1_2_12_1_8_1
e_1_2_12_1_108_1
e_1_2_12_1_104_1
e_1_2_12_1_80_1
Paszke A. (e_1_2_12_1_83_1) 2019
e_1_2_12_1_111_1
e_1_2_12_1_61_1
e_1_2_12_1_84_1
e_1_2_12_1_65_1
e_1_2_12_1_88_1
e_1_2_12_1_38_1
e_1_2_12_1_15_1
e_1_2_12_1_34_1
Singh V. P. (e_1_2_12_1_100_1) 1988
e_1_2_12_1_30_1
e_1_2_12_1_119_1
e_1_2_12_1_115_1
References_xml – ident: e_1_2_12_1_73_1
  doi: 10.1007/978-981-16-5501-2_7
– ident: e_1_2_12_1_119_1
  doi: 10.1029/2022WR034118
– ident: e_1_2_12_1_81_1
  doi: 10.1016/j.jhydrol.2023.130141
– ident: e_1_2_12_1_104_1
  doi: 10.1029/WR019i001p00251
– volume-title: A generalized streamflow simulation system: Conceptual modeling for digital computers
  year: 1973
  ident: e_1_2_12_1_11_1
– ident: e_1_2_12_1_39_1
  doi: 10.5194/hess‐18‐463‐2014
– ident: e_1_2_12_1_52_1
  doi: 10.1038/s41467‐018‐03629‐7
– ident: e_1_2_12_1_51_1
  doi: 10.1016/j.aej.2021.04.100
– ident: e_1_2_12_1_8_1
– ident: e_1_2_12_1_84_1
  doi: 10.1002/hyp.9660
– year: 2020
  ident: e_1_2_12_1_58_1
  article-title: Evaluating catchment models as multiple working hypotheses: On the role of error metrics, parameter sampling, model structure, and data information content
  publication-title: arXiv preprint arXiv:2009.00729
– ident: e_1_2_12_1_50_1
  doi: 10.1029/95WR01955
– ident: e_1_2_12_1_38_1
  doi: 10.1002/2013WR01509
– volume: 3
  start-page: 114
  year: 1957
  ident: e_1_2_12_1_75_1
  article-title: The form of the instantaneous unit hydrograph
  publication-title: International Association Hydrologcal Science
– ident: e_1_2_12_1_91_1
  doi: 10.1038/s41586‐019‐0912‐1
– ident: e_1_2_12_1_105_1
  doi: 10.1162/106365602320169811
– year: 2018
  ident: e_1_2_12_1_72_1
  article-title: Darts: Differentiable architecture search
  publication-title: arXiv preprint arXiv:1806.09055
– ident: e_1_2_12_1_60_1
  doi: 10.5194/hess‐23‐4323‐2019
– ident: e_1_2_12_1_64_1
  doi: 10.1029/2019WR026065
– ident: e_1_2_12_1_88_1
  doi: 10.1029/2020WR028338
– volume: 1
  start-page: 21
  year: 1988
  ident: e_1_2_12_1_68_1
  article-title: A theoretical framework for back‐propagation
  publication-title: Proceedings of the 1988 connectionist models summer school
– ident: e_1_2_12_1_77_1
  doi: 10.1038/s41586‐024‐07145‐1
– ident: e_1_2_12_1_108_1
  doi: 10.1007/s11831‐022‐1003‐4
– ident: e_1_2_12_1_67_1
  doi: 10.1162/tacl_a_00489
– ident: e_1_2_12_1_30_1
  doi: 10.1029/2022WR033918
– ident: e_1_2_12_1_36_1
  doi: 10.1029/2011WR011044
– year: 2021
  ident: e_1_2_12_1_89_1
  article-title: Fast‐slow streamflow model using mass‐conserving LSTM
  publication-title: arXiv preprint arXiv:2107.06057
– ident: e_1_2_12_1_74_1
  doi: 10.1016/j.envsoft.2023.105779
– ident: e_1_2_12_1_80_1
  doi: 10.31223/OSF.IO/53TE4
– ident: e_1_2_12_1_103_1
  doi: 10.1029/WR019i001p00260
– ident: e_1_2_12_1_23_1
  doi: 10.5194/gmd‐2023‐190
– ident: e_1_2_12_1_22_1
  doi: 10.1029/2022WR032404
– ident: e_1_2_12_1_16_1
  doi: 10.5194/hess‐28‐945‐2024
– ident: e_1_2_12_1_40_1
  doi: 10.1061/(ASCE)1084‐0699(1999)4:2(135)
– ident: e_1_2_12_1_13_1
  doi: 10.1029/2007WR006735
– ident: e_1_2_12_1_78_1
  doi: 10.1002/2014WR015895
– ident: e_1_2_12_1_113_1
  doi: 10.1029/2023WR036461
– volume: 26
  start-page: 963
  issue: 1
  year: 2010
  ident: e_1_2_12_1_2_1
  article-title: Application of a conceptual hydrologic model in teaching hydrologic processes
  publication-title: International Journal of Engineering Education
– ident: e_1_2_12_1_57_1
  doi: 10.1016/j.envsoft.2023.105831
– ident: e_1_2_12_1_37_1
  doi: 10.1016/j.jhydrol.2009.08.003
– ident: e_1_2_12_1_102_1
  doi: 10.1029/92WR02617
– ident: e_1_2_12_1_54_1
  doi: 10.1137/1.9781611975673.63
– start-page: 1
  volume-title: Backpropagation
  year: 2013
  ident: e_1_2_12_1_92_1
– start-page: 125
  volume-title: Water science Application
  year: 2003
  ident: e_1_2_12_1_35_1
– ident: e_1_2_12_1_90_1
  doi: 10.1029/2019WR024922
– ident: e_1_2_12_1_44_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_12_1_76_1
  doi: 10.1109/TAI.2022.3200028
– ident: e_1_2_12_1_5_1
  doi: 10.1080/09715010.2018.1556124
– ident: e_1_2_12_1_62_1
  doi: 10.5194/hess‐28‐4187‐2024
– ident: e_1_2_12_1_20_1
  doi: 10.5194/hess‐28‐2705‐2024
– ident: e_1_2_12_1_47_1
  doi: 10.1371/journal.pone.0145180
– year: 2014
  ident: e_1_2_12_1_59_1
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– ident: e_1_2_12_1_115_1
  doi: 10.1029/2019WR026471
– ident: e_1_2_12_1_93_1
  doi: 10.1111/1752‐1688.12586
– ident: e_1_2_12_1_41_1
  doi: 10.1029/WR019i001p00269
– ident: e_1_2_12_1_96_1
  doi: 10.1038/470316a
– year: 2018
  ident: e_1_2_12_1_69_1
  article-title: Spigan: Privileged adversarial learning from simulation
  publication-title: arXiv preprint arXiv:1810.03756
– volume-title: Hydrologic systems. Volume I: Rainfall‐runoff modeling
  year: 1988
  ident: e_1_2_12_1_100_1
– ident: e_1_2_12_1_7_1
  doi: 10.1029/2020WR029328
– volume: 20
  start-page: 1997
  issue: 1
  year: 2019
  ident: e_1_2_12_1_19_1
  article-title: Neural architecture search: A survey
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_12_1_29_1
  doi: 10.1111/1752‐1688.12964
– ident: e_1_2_12_1_109_1
  doi: 10.1029/2022WR034352
– start-page: 4275
  volume-title: International conference on machine learning
  year: 2021
  ident: e_1_2_12_1_46_1
– ident: e_1_2_12_1_9_1
  doi: 10.1016/j.jhydrol.2022.128618
– ident: e_1_2_12_1_118_1
  doi: 10.1029/2021WR031818
– ident: e_1_2_12_1_48_1
  doi: 10.5194/hess‐26‐5085‐2022
– ident: e_1_2_12_1_87_1
  doi: 10.1016/j.envsoft.2023.105730
– year: 2000
  ident: e_1_2_12_1_10_1
  article-title: Multicriteria calibration of hydrologic models
  publication-title: The University of Arizona Department of Hydrology and Water Resour
– year: 2023
  ident: e_1_2_12_1_97_1
  article-title: A Gaussian sliding Windows regression model for hydrological inference
  publication-title: arXiv preprint arXiv:2306.00453
– ident: e_1_2_12_1_110_1
  doi: 10.1038/s41467‐021‐26176‐w
– ident: e_1_2_12_1_117_1
  doi: 10.1029/2022WR033684
– ident: e_1_2_12_1_21_1
  doi: 10.1002/wat2.1386
– ident: e_1_2_12_1_27_1
  doi: 10.1029/2010WR010174
– ident: e_1_2_12_1_53_1
  doi: 10.1016/j.jhydrol.2023.129666
– volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: e_1_2_12_1_83_1
– ident: e_1_2_12_1_24_1
  doi: 10.5194/hess‐27‐2357‐2023
– ident: e_1_2_12_1_18_1
  doi: 10.1029/91WR02985
– ident: e_1_2_12_1_94_1
  doi: 10.1029/2008WR007327
– ident: e_1_2_12_1_14_1
  doi: 10.1016/j.envsoft.2020.104728
– start-page: 3
  volume-title: Flood forecasting
  year: 2016
  ident: e_1_2_12_1_82_1
– year: 2023
  ident: e_1_2_12_1_116_1
  article-title: Learning to generate lumped hydrological models
  publication-title: arXiv preprint arXiv:2309.09904
– ident: e_1_2_12_2_2_1
  doi: 10.1029/2023WR036710
– ident: e_1_2_12_1_49_1
  doi: 10.1080/02626667.2013.803183
– ident: e_1_2_12_1_106_1
  doi: 10.5194/gmd‐15‐3417‐2022
– ident: e_1_2_12_1_107_1
  doi: 10.1029/2021WR030394
– ident: e_1_2_12_1_101_1
  doi: 10.1623/hysj.48.6.857.51421
– ident: e_1_2_12_1_55_1
  doi: 10.1029/2020GL088229
– ident: e_1_2_12_1_42_1
  doi: 10.1038/s43247‐023‐00751‐3
– ident: e_1_2_12_1_28_1
  doi: 10.1038/s41561‐021‐00865‐3
– ident: e_1_2_12_1_43_1
  doi: 10.5194/hess‐27‐1‐2023
– ident: e_1_2_12_1_114_1
  doi: 10.1029/2021WR031033
– ident: e_1_2_12_1_26_1
  doi: 10.1029/2022WR033168
– ident: e_1_2_12_1_32_1
  doi: 10.1002/wrcr.20161
– volume-title: Catchment modeling and initial parameter estimation for the National Weather Service river forecast system (Vol. 31). Office of Hydrology
  year: 1976
  ident: e_1_2_12_1_85_1
– volume-title: A practical guide to relu
  year: 2017
  ident: e_1_2_12_1_71_1
– ident: e_1_2_12_1_15_1
– ident: e_1_2_12_1_79_1
  doi: 10.1029/2019WR024918
– ident: e_1_2_12_1_63_1
  doi: 10.5194/hess‐22‐6005‐2018
– ident: e_1_2_12_1_66_1
  doi: 10.1038/s41597‐023‐01975‐w
– ident: e_1_2_12_1_70_1
  doi: 10.2166/nh.2010.007
– ident: e_1_2_12_1_17_1
  doi: 10.1029/2021WR031548
– ident: e_1_2_12_1_86_1
  doi: 10.1016/S0022‐1694(03)00225‐7
– ident: e_1_2_12_1_6_1
  doi: 10.5194/hess‐27‐139‐2023
– ident: e_1_2_12_1_34_1
  doi: 10.1029/97WR03495
– ident: e_1_2_12_1_61_1
  doi: 10.5194/hess‐23‐4323‐2019
– ident: e_1_2_12_1_98_1
  doi: 10.1214/aos/1176344136
– ident: e_1_2_12_1_95_1
  doi: 10.1029/2008JD010636
– ident: e_1_2_12_1_25_1
  doi: 10.1029/2019WR026793
– ident: e_1_2_12_1_45_1
  doi: 10.1029/2023WR035803
– ident: e_1_2_12_1_111_1
  doi: 10.1016/j.jhydrol.2020.124700
– ident: e_1_2_12_1_31_1
  doi: 10.1029/2020WR027948
– ident: e_1_2_12_1_4_1
  doi: 10.5194/hess‐17‐1161‐2013
– ident: e_1_2_12_1_33_1
  doi: 10.1029/WR021i004p00473
– ident: e_1_2_12_1_65_1
  doi: 10.5194/hess‐23‐5089‐2019
– ident: e_1_2_12_1_99_1
  doi: 10.1038/s43017‐023‐00178‐5
– ident: e_1_2_12_1_3_1
  doi: 10.1109/tac.1974.1100705
– ident: e_1_2_12_1_12_1
  doi: 10.1016/j.jhydrol.2022.128340
– ident: e_1_2_12_1_56_1
  doi: 10.1029/2021WR030185
– ident: e_1_2_12_1_112_1
  doi: 10.1029/2019GL085722
SSID ssj0014567
Score 2.494718
Snippet We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using...
Abstract We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms architectural hypotheses
Base flow
Catchments
catchment‐scale
Computer applications
conceptual rainfall‐runoff (CRR) models
Data search
Diagnostic systems
Dynamics
Flow paths
Groundwater
hydrodynamics
hydrograph
Hydrologic models
Hydrology
Learning algorithms
Machine learning
MCP (mass‐conserving‐perceptron)
model validation
Modelling
physically‐interpretable
Regional development
Representations
River basins
Training
Watersheds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqhFQuFbRU3fKQK7UnGjWxndg-wqqIC2i1pYJb5FdEJZRFu2wlJA78BH4jv4QZx1mWA_TSQ6TYnliOx49vPOMZQr6GRpdS5jpzDZOZUL7KNC9E5nypioZ7BU8MNiFPTtT5uR4thfpCm7DOPXDXcT-YFy5wC5KJroRi1rDCeADN3gZZViJCo1zqXphK-gOABbLXLSPGSSbvOdMo7Yuzcc4lY-LZZhR99j8DmstwNe43h-vkXQKKdL9r4AZ5E9r35G1_j3gG7yl--cXNB3J7Gq1fZ_TJhtBeBjpKTHi4ux921xPnUOUQVt8LPBSE7F9QGujRjZ_2iyDF6Gh4R51GawIKAJEeA8Lu6sAzXMiFxKiziJlO2k3y-_Dn6fAoS3EVMgPLosq8DkGDINN4w41zvEJ1oi9za50KXFtASCL3UjMo9iJvquCNbYxU0PPWF4Z_JCvtpA2fCK18CKUuhJVAKZ2x8A0kKsYCOvpSA7LXd3DtktNxjH1xWUflN9P1MjsG5NuC-qpztvEC3QHyakGDLrJjBgycOg2c-l8DZ0C2e07Xad7Oal5g3CYQEcsB-bIohhmHahTThskcaWCTEFxK-LvvcYS82tj6bDwcox9G9fl_NHuLrGHtnT3hNlm5ns7DDll1f6__zKa7cRY8AkgODSY
  priority: 102
  providerName: Directory of Open Access Journals
Title Towards Interpretable Physical‐Conceptual Catchment‐Scale Hydrological Modeling Using the Mass‐Conserving‐Perceptron
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR037224
https://www.proquest.com/docview/3121471485
https://www.proquest.com/docview/3153843778
https://doaj.org/article/2d4ce3b21096482ba21ad642dbe7564a
Volume 60
WOSCitedRecordID wos001330837300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: PCBAR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (ProQuest)
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: PATMY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: 24P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0IIWiV54IxbKKkhwgogkdmL7SENXPdAlSlttOUV27FCkardKukiVOPAJfCNfwozjhO0BJMQhVmyPLSf22PPyDCEvbSNTziMZ1k3CQyZMFkoas7A2qYgbagQ8LtgEn8_F6aksvMAN78L0_iFGgRtihtuvEcGV7ryzAfSRCVw7W5QR5XAI3STbcUw5ruqEFaMWAYgDPmiYkdLxhu_Q_u1m62tHkvPcf43c3CRa3akzu_u_471H7nh6M3jXL5D75IZdPiC3h-vIHbz7MOhnVw_Jt2NnRNsFv00R9bkNCj-XP7__yPtbjmvoModN_Axli1B8BLU2OLgy7bCXBhhkDa-6B84oIQA6MzgEQr3vA0XBUAqZojesaVfLR-Rktn-cH4Q-PEOoYHcVoZHWSuCHGqOoqmuaoVbSpJHWtbBUaiC0WGS4TKDasKjJrFG6UVzEymgTK_qYbC1XS_uEBJmxNpUx0xwgea00tIFMliQW_YWJCXk9zFBVe9_lGELjvHI69ERWm393Ql6N0Be9z44_wO3hZI8w6GnbFazaz5VH3CoxrLZUA2cMIxGJVgkMH5g2oy1PM6YmZHdYKpVH_66iMYZ_Ak4znZAXYzUgLmpj1NKu1ggDZw2jnMPXvXEL56-DrRZlXqI7R_H038CfkR2s6A0Qd8nWZbu2z8mt-uvll66dOoSBlC8-Tcn23v68KKdOLgG59-Xs5APkDqMc0-QjpvzoF0AsIWI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9Bh7S98B9RGBAkeIJoSezE9iMUqiK6qiqdtrfIjh2GNKVTuiJN4oGPwGfkk3CXOKF7AAnxECmxL5YT-853vvPvAF64UqVCRCosykSEXNosVCzmYWFTGZfMSryaZBNiNpMnJ2ru85zSWZgWH6LfcCPOaOQ1MThtSHu0AQLJRLOdHy8iJnAVug47HGdSOoCdd4vx0bR3JKB-IDonMyk7PvYdWzjYfv_KqtSA91_ROLf11mbhGd_67y7fhpte5wzetJPkDlxz1V3Y7Y4kr_Hep0I_vbwH35ZNIO06-B2OaM5cMPfj-fP7j1F70nGDTY5QkJ_S_iIWf8JaF0wubd3J04ASrdFx96AJTAhQ1wwOUVlv26DtYCzFh3kbXFOvqvtwNH6_HE1Cn6Ih1ChhZWiVcwptotJqpouCZeSZtGlkTCEdUwaVLR5ZoRKstjwqM2e1KbWQsbbGxpo9gEG1qtxDCDLrXKpibgRSikIbfAcfsiRxhBkmh_CqG6K88PjllEbjLG_86InKt__uEF721Octbscf6N7SaPc0hLbdFKzqz7ln3jyxvHDMoHWMPZGJ0Ql2Hw03a5xIM66HsN_NldyLgHXOYkoBhdZmOoTnfTUyL3lkdOVWG6LB9YYzIfDrXjcz56-dzY8XowVBOspH_0b-DHYny8NpPv0w-_gY9oioDUjch8FFvXFP4Ebx9eLLun7q-ecXxiAe4A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagIMqFf8RCASPBCSKS2IntIyysioBVtBS1t8h_oZWqbJXtIlXiwCPwjDwJM44TtgeQEIdIiT2OnNgznvGMvyHkqW9UIUSqEtvkIuHSlYliGU-sK2TWMCfhCskmxHwuDw5UFfOc4lmYHh9i3HBDzgjyGhncn7gmog0gSCaY7Xx_kTIBq9BFcokXIGYR2plXoxsBtAMxuJhR1YmR79D-5Wbrc2tSgO4_p29uaq1h2Zld_-8O3yDXosZJX_VT5Ca54NtbZHs4kLyC-5gI_fDsNvm2F8JoV_R3MKI59rSKo_nz-49pf85xDa-cghg_xN1FKP4EtZ7unrlukKYU06zhYXcawhIoaJr0I6jq_TtwMxhK4aHqQ2u6ZXuHfJ693ZvuJjFBQ6JBvsrEKe8VWESN00xby0r0S7oiNcZKz5QBVYunTqgcqh1Pm9I7bRotZKadcZlmd8lWu2z9PUJL532hMm4EUAqrDbSBhzLPPSKGyQl5PgxRbSN6OSbROK6DFz1X9ebfnZBnI_VJj9rxB7rXONojDWJth4Jl96WOrFvnjlvPDNjG0BOZG51D98Fsc8aLouR6QnaGuVJHAbCqWYYJoMDWLCbkyVgNrIv-GN365RppYLXhTAj4uhdh5vy1s_X-YrpAQEd5_9_IH5Mr1ZtZ_eHd_P0DchVp-mjEHbJ12q39Q3LZfj09WnWPAvP8AhWLHMk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Interpretable+Physical%E2%80%90Conceptual+Catchment%E2%80%90Scale+Hydrological+Modeling+Using+the+Mass%E2%80%90Conserving%E2%80%90Perceptron&rft.jtitle=Water+resources+research&rft.au=Wang%2C+Yuan%E2%80%90Heng&rft.au=Gupta%2C+Hoshin+V&rft.date=2024-10-01&rft.issn=0043-1397&rft.volume=60&rft.issue=10+p.e2024WR037224-&rft_id=info:doi/10.1029%2F2024WR037224&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon