Error detection and correction for coding theory on k-order Gaussian Fibonacci matrices
In this study, the coding theory defined for k-order Gaussian Fibonacci polynomials is rearranged by taking <inline-formula><tex-math id="M1">\begin{document}$ x = 1 $\end{document}</tex-math></inline-formula>. We call this coding theory the k-order Gaussian Fibonac...
Gespeichert in:
| Veröffentlicht in: | Mathematical biosciences and engineering : MBE Jg. 20; H. 2; S. 1993 - 2010 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
AIMS Press
01.01.2023
|
| Schlagworte: | |
| ISSN: | 1551-0018, 1551-0018 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this study, the coding theory defined for k-order Gaussian Fibonacci polynomials is rearranged by taking <inline-formula><tex-math id="M1">\begin{document}$ x = 1 $\end{document}</tex-math></inline-formula>. We call this coding theory the k-order Gaussian Fibonacci coding theory. This coding method is based on the <inline-formula><tex-math id="M2">\begin{document}$ {Q_k}, {R_k} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ E_n^{(k)} $\end{document}</tex-math></inline-formula> matrices. In this respect, it differs from the classical encryption method. Unlike classical algebraic coding methods, this method theoretically allows for the correction of matrix elements that can be infinite integers. Error detection criterion is examined for the case of <inline-formula><tex-math id="M4">\begin{document}$ k = 2 $\end{document}</tex-math></inline-formula> and this method is generalized to <inline-formula><tex-math id="M5">\begin{document}$ k $\end{document}</tex-math></inline-formula> and error correction method is given. In the simplest case, for <inline-formula><tex-math id="M6">\begin{document}$ k = 2 $\end{document}</tex-math></inline-formula>, the correct capability of the method is essentially equal to 93.33%, exceeding all well-known correction codes. It appears that for a sufficiently large value of <inline-formula><tex-math id="M7">\begin{document}$ k $\end{document}</tex-math></inline-formula>, the probability of decoding error is almost zero. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1551-0018 1551-0018 |
| DOI: | 10.3934/mbe.2023092 |