MDF-DTA: A Multi-Dimensional Fusion Approach for Drug-Target Binding Affinity Prediction
Drug-target affinity (DTA) prediction is an important task in the early stages of drug discovery. Traditional biological approaches are time-consuming, effort-consuming, and resource-consuming due to the large size of genomic and chemical spaces. Computational approaches using machine learning have...
Uloženo v:
| Vydáno v: | Journal of chemical information and modeling Ročník 64; číslo 13; s. 4980 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
08.07.2024
|
| Témata: | |
| ISSN: | 1549-960X, 1549-960X |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Drug-target affinity (DTA) prediction is an important task in the early stages of drug discovery. Traditional biological approaches are time-consuming, effort-consuming, and resource-consuming due to the large size of genomic and chemical spaces. Computational approaches using machine learning have emerged to narrow down the drug candidate search space. However, most of these prediction models focus on single feature encoding of drugs and targets, ignoring the importance of integrating different dimensions of these features. We propose a deep learning-based approach called Multi-Dimensional Fusion for Drug Target Affinity Prediction (MDF-DTA) incorporating different dimensional features. Our model fuses 1D, 2D, and 3D representations obtained from different pretrained models for both drugs and targets. We evaluated MDF-DTA on two standard benchmark data sets: DAVIS and KIBA. Experimental results show that MDF-DTA outperforms many state-of-the-art techniques in the DTA task across both data sets. Through ablation studies and performance evaluation metrics, we evaluate the importance of individual representations and the impact of each representation on MDF-DTA. |
|---|---|
| AbstractList | Drug-target affinity (DTA) prediction is an important task in the early stages of drug discovery. Traditional biological approaches are time-consuming, effort-consuming, and resource-consuming due to the large size of genomic and chemical spaces. Computational approaches using machine learning have emerged to narrow down the drug candidate search space. However, most of these prediction models focus on single feature encoding of drugs and targets, ignoring the importance of integrating different dimensions of these features. We propose a deep learning-based approach called Multi-Dimensional Fusion for Drug Target Affinity Prediction (MDF-DTA) incorporating different dimensional features. Our model fuses 1D, 2D, and 3D representations obtained from different pretrained models for both drugs and targets. We evaluated MDF-DTA on two standard benchmark data sets: DAVIS and KIBA. Experimental results show that MDF-DTA outperforms many state-of-the-art techniques in the DTA task across both data sets. Through ablation studies and performance evaluation metrics, we evaluate the importance of individual representations and the impact of each representation on MDF-DTA.Drug-target affinity (DTA) prediction is an important task in the early stages of drug discovery. Traditional biological approaches are time-consuming, effort-consuming, and resource-consuming due to the large size of genomic and chemical spaces. Computational approaches using machine learning have emerged to narrow down the drug candidate search space. However, most of these prediction models focus on single feature encoding of drugs and targets, ignoring the importance of integrating different dimensions of these features. We propose a deep learning-based approach called Multi-Dimensional Fusion for Drug Target Affinity Prediction (MDF-DTA) incorporating different dimensional features. Our model fuses 1D, 2D, and 3D representations obtained from different pretrained models for both drugs and targets. We evaluated MDF-DTA on two standard benchmark data sets: DAVIS and KIBA. Experimental results show that MDF-DTA outperforms many state-of-the-art techniques in the DTA task across both data sets. Through ablation studies and performance evaluation metrics, we evaluate the importance of individual representations and the impact of each representation on MDF-DTA. Drug-target affinity (DTA) prediction is an important task in the early stages of drug discovery. Traditional biological approaches are time-consuming, effort-consuming, and resource-consuming due to the large size of genomic and chemical spaces. Computational approaches using machine learning have emerged to narrow down the drug candidate search space. However, most of these prediction models focus on single feature encoding of drugs and targets, ignoring the importance of integrating different dimensions of these features. We propose a deep learning-based approach called Multi-Dimensional Fusion for Drug Target Affinity Prediction (MDF-DTA) incorporating different dimensional features. Our model fuses 1D, 2D, and 3D representations obtained from different pretrained models for both drugs and targets. We evaluated MDF-DTA on two standard benchmark data sets: DAVIS and KIBA. Experimental results show that MDF-DTA outperforms many state-of-the-art techniques in the DTA task across both data sets. Through ablation studies and performance evaluation metrics, we evaluate the importance of individual representations and the impact of each representation on MDF-DTA. |
| Author | Ranjan, Amit Alvin, Chris Mukhopadhyay, Supratik Bess, Adam |
| Author_xml | – sequence: 1 givenname: Amit orcidid: 0000-0002-7940-5865 surname: Ranjan fullname: Ranjan, Amit organization: Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States – sequence: 2 givenname: Adam surname: Bess fullname: Bess, Adam organization: Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States – sequence: 3 givenname: Chris surname: Alvin fullname: Alvin, Chris organization: Department of Computer Science, Furman University, Greenville, South Carolina 29613, United States – sequence: 4 givenname: Supratik surname: Mukhopadhyay fullname: Mukhopadhyay, Supratik organization: Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38888163$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkD1PwzAQhi1URD9gZ0IeWVLs2HFrttC0gNQKhiJ1ixznXFwlTrGTof-eIIrELfcMz3s6vWM0cI0DhG4pmVIS0welw_SgbT3lmhBGyQUa0YTLSAqyG_zjIRqHcOgVJkV8hYZs3g8VbIR2m2wVZdv0Ead401WtjTJbgwu2carCq-4HcHo8-kbpT2wajzPf7aOt8nto8ZN1pXV7nBpjnW1P-N1DaXXbh67RpVFVgJvznqCP1XK7eInWb8-vi3QdKS7iNoqFYAUXoLWUuhSaJywBIRLOCcgEDFEFSGM4ByZjSQsoWSnnilMDBS2JiCfo_vdu_-JXB6HNaxs0VJVy0HQhZ2RGZjLhgvXq3VntihrK_Ohtrfwp_2sj_gaH8mP7 |
| CitedBy_id | crossref_primary_10_1016_j_ejmech_2025_118153 crossref_primary_10_1109_ACCESS_2025_3583338 crossref_primary_10_1016_j_compbiomed_2025_110438 crossref_primary_10_3390_cancers17183023 crossref_primary_10_1007_s12539_025_00712_8 crossref_primary_10_3390_biom15020221 crossref_primary_10_1007_s10822_025_00605_4 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.jcim.4c00310 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-960X |
| ExternalDocumentID | 38888163 |
| Genre | Journal Article |
| GroupedDBID | --- -~X 4.4 55A 5GY 5VS 7~N AABXI ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACIWK ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CGR CUPRZ CUY CVF D0L DU5 EBS ECM ED~ EIF F5P GGK GNL IH9 JG~ NPM P2P PQQKQ RNS ROL UI2 VF5 VG9 W1F 7X8 |
| ID | FETCH-LOGICAL-a462t-2663b46ecc99cd6c4535e665440e95ef0abe9ff44e39291bed3d98a41feb1d062 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001250641100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-960X |
| IngestDate | Wed Oct 01 14:57:29 EDT 2025 Mon Jul 21 06:02:30 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a462t-2663b46ecc99cd6c4535e665440e95ef0abe9ff44e39291bed3d98a41feb1d062 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7940-5865 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11234358 |
| PMID | 38888163 |
| PQID | 3070795463 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3070795463 pubmed_primary_38888163 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-08 |
| PublicationDateYYYYMMDD | 2024-07-08 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of chemical information and modeling |
| PublicationTitleAlternate | J Chem Inf Model |
| PublicationYear | 2024 |
| SSID | ssj0033962 |
| Score | 2.5112147 |
| Snippet | Drug-target affinity (DTA) prediction is an important task in the early stages of drug discovery. Traditional biological approaches are time-consuming,... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4980 |
| SubjectTerms | Deep Learning Drug Discovery - methods Machine Learning Pharmaceutical Preparations - chemistry Pharmaceutical Preparations - metabolism Protein Binding Proteins - chemistry Proteins - metabolism |
| Title | MDF-DTA: A Multi-Dimensional Fusion Approach for Drug-Target Binding Affinity Prediction |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38888163 https://www.proquest.com/docview/3070795463 |
| Volume | 64 |
| WOSCitedRecordID | wos001250641100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xfpk3IviauTXZ2vgidbP4srGHCX0rTXIiFezmLoL_3pOs0ydBEErpS6E9Sc75Ts7J9xFyk0OkA-PS1BDTVQFGoB-0moEOQ2VbSkvQXmwiHAyiNJXDasNtVrVVrnyid9RmrN0e-S33XG6OvP1-8s6capSrrlYSGuukxhHKuJauMP2uInAuvaCoYyFjiNTTqkyJYe0217PGqy7eGkJ7dszfAaYPNMnufz9xj-xUEJPGyzmxT9agPCBb3ZWy2yFJ-72E9UbxHY2pP4DLeo7jf8nPQZOFe6BxRTZOEdXS3nTxwka-aZw-FP4gDI2tLdAffNLh1BV73AAfkefkcdR9YpXCAstFJ5gzjM5ciQ4Oo5TadLRo8zY4PWLRBNkG28wVSGuFAAejWgoMNzLKRcuiizfNTnBMNspxCaeEQmRybXMlwQZCCSvxsqKpcL1HioOpk-uV0TL8XVeWyEsYL2bZj9nq5GRp-WyypNrIOCboEULGsz-8fU62A0Qcvpc2uiA1i-sXLsmm_pgXs-mVnxp4Hwz7XwqrxUg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDF-DTA%3A+A+Multi-Dimensional+Fusion+Approach+for+Drug-Target+Binding+Affinity+Prediction&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Ranjan%2C+Amit&rft.au=Bess%2C+Adam&rft.au=Alvin%2C+Chris&rft.au=Mukhopadhyay%2C+Supratik&rft.date=2024-07-08&rft.issn=1549-960X&rft.eissn=1549-960X&rft.volume=64&rft.issue=13&rft.spage=4980&rft_id=info:doi/10.1021%2Facs.jcim.4c00310&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-960X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-960X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-960X&client=summon |