Unprecedented High Oxygen Evolution Activity of Electrocatalysts Derived from Surface-Mounted Metal-Organic Frameworks
The oxygen evolution reaction (OER) is a key process for renewable energy storage. However, developing non-noble metal OER electrocatalysts with high activity, long durability and scalability remains a major challenge. Herein, high OER activity and stability in alkaline solution were discovered for...
Saved in:
| Published in: | Journal of the American Chemical Society Vol. 141; no. 14; p. 5926 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
10.04.2019
|
| ISSN: | 1520-5126, 1520-5126 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The oxygen evolution reaction (OER) is a key process for renewable energy storage. However, developing non-noble metal OER electrocatalysts with high activity, long durability and scalability remains a major challenge. Herein, high OER activity and stability in alkaline solution were discovered for mixed nickel/cobalt hydroxide electrocatalysts, which were derived in one-step procedure from oriented surface-mounted metal-organic framework (SURMOF) thin films that had been directly grown layer-by-layer on macro- and microelectrode substrates. The obtained mass activity of ∼2.5 mA·μg
at the defined overpotential of 300 mV is 1 order of magnitude higher than that of the benchmarked IrO
electrocatalyst and at least 3.5 times higher than the mass activity of any state-of-the-art NiFe-, FeCoW-, or NiCo-based electrocatalysts reported in the literature. The excellent morphology of the SURMOF-derived ultrathin electrocatalyst coating led to a high exposure of the most active Ni- and Co-based sites. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1520-5126 1520-5126 |
| DOI: | 10.1021/jacs.9b00549 |