Mechatronics with experiments
Comprehensively covers the fundamental scientific principles and technologies that are used in the design of modern computer-controlled machines and processes. * Covers embedded microcontroller based design of machines * Includes MATLAB®/Simulink®-based embedded control software development * Consid...
Uloženo v:
| Hlavní autor: | |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Chichester
Wiley
2015
John Wiley & Sons John Wiley & Sons, Incorporated Wiley-Blackwell |
| Vydání: | 2nd ed |
| Témata: | |
| ISBN: | 1118802462, 9781118802465, 9781118802458, 1118802454 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- 7.13.1 Case Study: Multi Function Hydraulic Circuit of a Caterpillar Wheel Loader -- 7.14 Problems -- 8 Electric Actuators: Motor and Drive Technology -- 8.1 Introduction -- 8.1.1 Steady-State Torque-Speed Range, Regeneration, and Power Dumping -- 8.1.2 Electric Fields and Magnetic Fields -- 8.1.3 Permanent Magnetic Materials -- 8.2 Energy Losses in Electric Motors -- 8.2.1 Resistance Losses -- 8.2.2 Core Losses -- 8.2.3 Friction and Windage Losses -- 8.3 Solenoids -- 8.3.1 Operating Principles of Solenoids -- 8.3.2 DC Solenoid: Electromechanical Dynamic Model -- 8.4 DC Servo Motors and Drives -- 8.4.1 Operating Principles of DC Motors -- 8.4.2 Drives for DC Brush-type and Brushless Motors -- 8.5 AC Induction Motors and Drives -- 8.5.1 AC Induction Motor Operating Principles -- 8.5.2 Drives for AC Induction Motors -- 8.6 Step Motors -- 8.6.1 Basic Stepper Motor Operating Principles -- 8.6.2 Step Motor Drives -- 8.7 Linear Motors -- 8.8 DC Motor: Electromechanical Dynamic Model -- 8.8.1 Voltage Amplifier Driven DC Motor -- 8.8.2 Current Amplifier Driven DC Motor -- 8.8.3 Steady-State Torque-Speed Characteristics of DC Motor Under Constant Terminal Voltage -- 8.8.4 Steady-State Torque-Speed Characteristic of a DC Motor Under Constant Commanded Current Condition -- 8.9 Problems -- 9 Programmable Logic Controllers -- 9.1 Introduction -- 9.2 Hardware Components of PLCs -- 9.2.1 PLC CPU and I/O Capabilities -- 9.2.2 Opto-isolated Discrete Input and Output Modules -- 9.2.3 Relays, Contactors, Starters -- 9.2.4 Counters and Timers -- 9.3 Programming of PLCs -- 9.3.1 Hard-wired Seal-in Circuit -- 9.4 PLC Control System Applications -- 9.4.1 Closed Loop Temperature Control System -- 9.4.2 Conveyor Speed Control System -- 9.4.3 Closed Loop Servo Position Control System -- 9.5 PLC Application Example: Conveyor and Furnace Control -- 9.6 Problems
- 2.12.7 Practical Implementation Issues of PID Control -- 2.12.8 Time Delay in Control Systems -- 2.13 Translation of Analog Control to Digital Control -- 2.13.1 Finite Difference Approximations -- 2.14 Problems -- 3 Mechanisms for Motion Transmission -- 3.1 Introduction -- 3.2 Rotary to Rotary Motion Transmission Mechanisms -- 3.2.1 Gears -- 3.2.2 Belt and Pulley -- 3.3 Rotary to Translational Motion Transmission Mechanisms -- 3.3.1 Lead-Screw and Ball-Screw Mechanisms -- 3.3.2 Rack and Pinion Mechanism -- 3.3.3 Belt and Pulley -- 3.4 Cyclic Motion Transmission Mechanisms -- 3.4.1 Linkages -- 3.4.2 Cams -- 3.5 Shaft Misalignments and Flexible Couplings -- 3.6 Actuator Sizing -- 3.6.1 Inertia Match Between Motor and Load -- 3.7 Homogeneous Transformation Matrices -- 3.8 A Case Study: Automotive Transmission as a "Gear Reducer" -- 3.8.1 The Need for a Gearbox "Transmission" in Automotive Applications -- 3.8.2 Automotive Transmission: Manual Shift Type -- 3.8.3 Planetary Gears -- 3.8.4 Torque Converter -- 3.8.5 Clutches and Brakes: Multi Disc Type -- 3.8.6 Example: An Automatic Transmission Control Algorithm -- 3.8.7 Example: Powertrain of Articulated Trucks -- 3.9 Problems -- 4 Microcontrollers -- 4.1 Embedded Computers versus Non-Embedded Computers -- 4.2 Basic Computer Model -- 4.3 Microcontroller Hardware and Software: PIC 18F452 -- 4.3.1 Microcontroller Hardware -- 4.3.2 Microprocessor Software -- 4.3.3 I/O Peripherals of PIC 18F452 -- 4.4 Interrupts -- 4.4.1 General Features of Interrupts -- 4.4.2 Interrupts on PIC 18F452 -- 4.5 Problems -- 5 Electronic Components for Mechatronic Systems -- 5.1 Introduction -- 5.2 Basics of Linear Circuits -- 5.3 Equivalent Electrical Circuit Methods -- 5.3.1 Thevenin's Equivalent Circuit -- 5.3.2 Norton's Equivalent Circuit -- 5.4 Impedance -- 5.4.1 Concept of Impedance
- 5.4.2 Amplifier: Gain, Input Impedance, and Output Impedance -- 5.4.3 Input and Output Loading Errors -- 5.5 Semiconductor Electronic Devices -- 5.5.1 Semiconductor Materials -- 5.5.2 Diodes -- 5.5.3 Transistors -- 5.6 Operational Amplifiers -- 5.6.1 Basic Op-Amp -- 5.6.2 Common Op-Amp Circuits -- 5.7 Digital Electronic Devices -- 5.7.1 Logic Devices -- 5.7.2 Decoders -- 5.7.3 Multiplexer -- 5.7.4 Flip-Flops -- 5.8 Digital and Analog I/O and Their Computer Interface -- 5.9 D/A and A/D Converters and Their Computer Interface -- 5.10 Problems -- 6 Sensors -- 6.1 Introduction to Measurement Devices -- 6.2 Measurement Device Loading Errors -- 6.3 Wheatstone Bridge Circuit -- 6.3.1 Null Method -- 6.3.2 Deflection Method -- 6.4 Position Sensors -- 6.4.1 Potentiometer -- 6.4.2 LVDT, Resolver, and Syncro -- 6.4.3 Encoders -- 6.4.4 Hall Effect Sensors -- 6.4.5 Capacitive Gap Sensors -- 6.4.6 Magnetostriction Position Sensors -- 6.4.7 Sonic Distance Sensors -- 6.4.8 Photoelectic Distance and Presence Sensors -- 6.4.9 Presence Sensors: ON/OFF Sensors -- 6.5 Velocity Sensors -- 6.5.1 Tachometers -- 6.5.2 Digital Derivation of Velocity from Position Signal -- 6.6 Acceleration Sensors -- 6.6.1 Inertial Accelerometers -- 6.6.2 Piezoelectric Accelerometers -- 6.6.3 Strain-gauge Based Accelerometers -- 6.7 Strain, Force, and Torque Sensors -- 6.7.1 Strain Gauges -- 6.7.2 Force and Torque Sensors -- 6.8 Pressure Sensors -- 6.8.1 Displacement Based Pressure Sensors -- 6.8.2 Strain-Gauge Based Pressure Sensor -- 6.8.3 Piezoelectric Based Pressure Sensor -- 6.8.4 Capacitance Based Pressure Sensor -- 6.9 Temperature Sensors -- 6.9.1 Temperature Sensors Based on Dimensional Change -- 6.9.2 Temperature Sensors Based on Resistance -- 6.9.3 Thermocouples -- 6.10 Flow Rate Sensors -- 6.10.1 Mechanical Flow Rate Sensors -- 6.10.2 Differential Pressure Flow Rate Sensors
- 10 Programmable Motion Control Systems
- Intro -- MECHATRONICS -- Contents -- Preface -- About the companion website -- 1 Introduction -- 1.1 Case Study: Modeling and Control of Combustion Engines -- 1.1.1 Diesel Engine Components -- 1.1.2 Engine Control System Components -- 1.1.3 Engine Modeling with Lug Curve -- 1.1.4 Engine Control Algorithms: Engine Speed Regulation using Fuel Map and a Proportional Control Algorithm -- 1.2 Example: Electro-hydraulic Flight Control Systems for Commercial Airplanes -- 1.3 Embedded Control Software Development for Mechatronic Systems -- 1.4 Problems -- 2 Closed Loop Control -- 2.1 Components of a Digital Control System -- 2.2 The Sampling Operation and Signal Reconstruction -- 2.2.1 Sampling: A/D Operation -- 2.2.2 Sampling Circuit -- 2.2.3 Mathematical Idealization of the Sampling Circuit -- 2.2.4 Signal Reconstruction: D/A Operation -- 2.2.5 Real-time Control Update Methods and Time Delay -- 2.2.6 Filtering and Bandwidth Issues -- 2.3 Open Loop Control Versus Closed Loop Control -- 2.4 Performance Specifications for Control Systems -- 2.5 Time Domain and S-domain Correlation of Signals -- 2.6 Transient Response Specifications: Selection of Pole Locations -- 2.6.1 Step Response of a Second-Order System -- 2.6.2 Standard Filters -- 2.7 Steady-State Response Specifications -- 2.8 Stability of Dynamic Systems -- 2.8.1 Bounded Input-Bounded Output Stability -- 2.9 Experimental Determination of Frequency Response -- 2.9.1 Graphical Representation of Frequency Response -- 2.9.2 Stability Analysis in the Frequency Domain: Nyquist Stability Criteria -- 2.10 The Root Locus Method -- 2.11 Correlation Between Time Domain and Frequency Domain Information -- 2.12 Basic Feedback Control Types -- 2.12.1 Proportional Control -- 2.12.2 Derivative Control -- 2.12.3 Integral Control -- 2.12.4 PI Control -- 2.12.5 PD Control -- 2.12.6 PID Control
- 6.10.3 Flow Rate Sensor Based on Faraday's Induction Principle -- 6.10.4 Thermal Flow Rate Sensors: Hot Wire Anemometer -- 6.10.5 Mass Flow Rate Sensors: Coriolis Flow Meters -- 6.11 Humidity Sensors -- 6.12 Vision Systems -- 6.13 GPS: Global Positioning System -- 6.13.1 Operating Principles of GPS -- 6.13.2 Sources of Error in GPS -- 6.13.3 Differential GPS -- 6.14 Problems -- 7 Electrohydraulic Motion Control Systems -- 7.1 Introduction -- 7.2 Fundamental Physical Principles -- 7.2.1 Analogy Between Hydraulic and Electrical Components -- 7.2.2 Energy Loss and Pressure Drop in Hydraulic Circuits -- 7.3 Hydraulic Pumps -- 7.3.1 Types of Positive Displacement Pumps -- 7.3.2 Pump Performance -- 7.3.3 Pump Control -- 7.4 Hydraulic Actuators: Hydraulic Cylinder and Rotary Motor -- 7.5 Hydraulic Valves -- 7.5.1 Pressure Control Valves -- 7.5.2 Example: Multi Function Hydraulic Circuit with Poppet Valves -- 7.5.3 Flow Control Valves -- 7.5.4 Example: A Multi Function Hydraulic Circuit using Post-Pressure Compensated Proportional Valves -- 7.5.5 Directional, Proportional, and Servo Valves -- 7.5.6 Mounting of Valves in a Hydraulic Circuit -- 7.5.7 Performance Characteristics of Proportional and Servo Valves -- 7.6 Sizing of Hydraulic Motion System Components -- 7.7 Hydraulic Motion Axis Natural Frequency and Bandwidth Limit -- 7.8 Linear Dynamic Model of a One-Axis Hydraulic Motion System -- 7.8.1 Position Controlled Electrohydraulic Motion Axes -- 7.8.2 Load Pressure Controlled Electrohydraulic MotionAxes -- 7.9 Nonlinear Dynamic Model of One-Axis Hydraulic Motion System -- 7.10 Example: Open Center Hydraulic System - Force and Speed Modulation Curves in Steady State -- 7.11 Example: Hydrostatic Transmissions -- 7.12 Current Trends in Electrohydraulics -- 7.13 Case Studies

