Person-specific dose-finding for a digital messaging intervention to promote physical activity

Digital messaging is an established method for promoting physical activity. Systematic approaches for dose-finding have not been widely used in behavioral intervention development. We apply system identification tools from control systems engineering to estimate dynamical models and inform decision...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Health psychology Ročník 40; číslo 8; s. 502
Hlavní autoři: Hojjatinia, Sarah, Hojjatinia, Sahar, Lagoa, Constantino M, Brunke-Reese, Deborah, Conroy, David E
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.08.2021
ISSN:1930-7810, 1930-7810
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Digital messaging is an established method for promoting physical activity. Systematic approaches for dose-finding have not been widely used in behavioral intervention development. We apply system identification tools from control systems engineering to estimate dynamical models and inform decision rules for digital messaging intervention to promote physical activity.OBJECTIVEDigital messaging is an established method for promoting physical activity. Systematic approaches for dose-finding have not been widely used in behavioral intervention development. We apply system identification tools from control systems engineering to estimate dynamical models and inform decision rules for digital messaging intervention to promote physical activity.Insufficiently active emerging and young adults (n = 45) wore an activity monitor that recorded minute-level step counts and heart rate and received 0-6 digital messages daily on their smartphone for 6 months. Messages were drawn from 3 content libraries (move more, sit less, inspirational quotes). Location recordings via location services in the user's smartphone were used to lookup weather indices at the time and place of message delivery. Following system identification, responses to each message type were simulated under different conditions. Response features were extracted to summarize dynamic processes.METHODInsufficiently active emerging and young adults (n = 45) wore an activity monitor that recorded minute-level step counts and heart rate and received 0-6 digital messages daily on their smartphone for 6 months. Messages were drawn from 3 content libraries (move more, sit less, inspirational quotes). Location recordings via location services in the user's smartphone were used to lookup weather indices at the time and place of message delivery. Following system identification, responses to each message type were simulated under different conditions. Response features were extracted to summarize dynamic processes.A generic model based on composite data was conservative and did not capture the heterogeneous responses evident in person-specific models. No messages were uniformly ineffective but responses to specific message content in different contexts varied between people. Exterior temperature at the time of message receipt moderated the size of some message effects.RESULTSA generic model based on composite data was conservative and did not capture the heterogeneous responses evident in person-specific models. No messages were uniformly ineffective but responses to specific message content in different contexts varied between people. Exterior temperature at the time of message receipt moderated the size of some message effects.A generic model of message effects on physical activity can provide the initial evidence for context-sensitive decision rules in a just-in-time adaptive intervention, but it is likely to be error-prone and inefficient. As individual data accumulates, person-specific models should be estimated to optimize treatment and evolve as people are exposed to new environments and accumulate new experiences. (PsycInfo Database Record (c) 2021 APA, all rights reserved).CONCLUSIONSA generic model of message effects on physical activity can provide the initial evidence for context-sensitive decision rules in a just-in-time adaptive intervention, but it is likely to be error-prone and inefficient. As individual data accumulates, person-specific models should be estimated to optimize treatment and evolve as people are exposed to new environments and accumulate new experiences. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1930-7810
1930-7810
DOI:10.1037/hea0001117