Growth and stabilization of silver nanoparticles on carbon dots and sensing application

Carbon dots (C-dots) have been proven to show the capability for direct reduction of Ag(+) to elemental silver (Ag(0)) without additional reducing agent or external photoirradiation by incubating Ag(+) with C-dots for 5 min in a water bath at 50 °C. Silver nanoparticles (Ag-NPs) are simultaneously f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Langmuir Ročník 29; číslo 52; s. 16135
Hlavní autoři: Shen, Liming, Chen, Meiling, Hu, Linlin, Chen, Xuwei, Wang, Jianhua
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 31.12.2013
Témata:
ISSN:1520-5827, 1520-5827
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Carbon dots (C-dots) have been proven to show the capability for direct reduction of Ag(+) to elemental silver (Ag(0)) without additional reducing agent or external photoirradiation by incubating Ag(+) with C-dots for 5 min in a water bath at 50 °C. Silver nanoparticles (Ag-NPs) are simultaneously formed with an average size of 3.1 ± 1.5 nm and grew on carbon dots. This process involves the oxidation of amine or phenol hydroxyl groups on the aromatic ring of C-dots. Meanwhile C-dots protect and stabilize the Ag-NPs from aggregation in aqueous medium; that is, the Ag-NPs are stable at least for 45 days in aqueous medium. The formed Ag-NPs cause significant resonance light scattering (RLS), which correlates closely with the concentration of silver cation, and this facilitates quantitative detection of silver in aqueous medium.
AbstractList Carbon dots (C-dots) have been proven to show the capability for direct reduction of Ag(+) to elemental silver (Ag(0)) without additional reducing agent or external photoirradiation by incubating Ag(+) with C-dots for 5 min in a water bath at 50 °C. Silver nanoparticles (Ag-NPs) are simultaneously formed with an average size of 3.1 ± 1.5 nm and grew on carbon dots. This process involves the oxidation of amine or phenol hydroxyl groups on the aromatic ring of C-dots. Meanwhile C-dots protect and stabilize the Ag-NPs from aggregation in aqueous medium; that is, the Ag-NPs are stable at least for 45 days in aqueous medium. The formed Ag-NPs cause significant resonance light scattering (RLS), which correlates closely with the concentration of silver cation, and this facilitates quantitative detection of silver in aqueous medium.
Carbon dots (C-dots) have been proven to show the capability for direct reduction of Ag(+) to elemental silver (Ag(0)) without additional reducing agent or external photoirradiation by incubating Ag(+) with C-dots for 5 min in a water bath at 50 °C. Silver nanoparticles (Ag-NPs) are simultaneously formed with an average size of 3.1 ± 1.5 nm and grew on carbon dots. This process involves the oxidation of amine or phenol hydroxyl groups on the aromatic ring of C-dots. Meanwhile C-dots protect and stabilize the Ag-NPs from aggregation in aqueous medium; that is, the Ag-NPs are stable at least for 45 days in aqueous medium. The formed Ag-NPs cause significant resonance light scattering (RLS), which correlates closely with the concentration of silver cation, and this facilitates quantitative detection of silver in aqueous medium.Carbon dots (C-dots) have been proven to show the capability for direct reduction of Ag(+) to elemental silver (Ag(0)) without additional reducing agent or external photoirradiation by incubating Ag(+) with C-dots for 5 min in a water bath at 50 °C. Silver nanoparticles (Ag-NPs) are simultaneously formed with an average size of 3.1 ± 1.5 nm and grew on carbon dots. This process involves the oxidation of amine or phenol hydroxyl groups on the aromatic ring of C-dots. Meanwhile C-dots protect and stabilize the Ag-NPs from aggregation in aqueous medium; that is, the Ag-NPs are stable at least for 45 days in aqueous medium. The formed Ag-NPs cause significant resonance light scattering (RLS), which correlates closely with the concentration of silver cation, and this facilitates quantitative detection of silver in aqueous medium.
Author Chen, Xuwei
Hu, Linlin
Wang, Jianhua
Shen, Liming
Chen, Meiling
Author_xml – sequence: 1
  givenname: Liming
  surname: Shen
  fullname: Shen, Liming
  organization: Research Center for Analytical Sciences, College of Sciences, Northeastern University , Box 332, Shenyang 110819, China
– sequence: 2
  givenname: Meiling
  surname: Chen
  fullname: Chen, Meiling
– sequence: 3
  givenname: Linlin
  surname: Hu
  fullname: Hu, Linlin
– sequence: 4
  givenname: Xuwei
  surname: Chen
  fullname: Chen, Xuwei
– sequence: 5
  givenname: Jianhua
  surname: Wang
  fullname: Wang, Jianhua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24308456$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEUhYNU7EMX_gHJ0s1oXp3MLKXYKhTcKC6Hm0lGI2kyJqlFf72jrSBncQ7c75zFnaKRD94gdE7JFSWMXjsQRDBJdkdoQueMFPOKydG_PEbTlN4IITUX9QkaM8FJJeblBD2vYtjlVwxe45RBWWe_INvgcehwsu7DROzBhx5itq0zCQ-nFqIaTIec9kXjk_UvGPre2fa3foqOO3DJnB18hp6Wt4-Lu2L9sLpf3KwLEELkQkmuaaW0LmXZVaWUxPC6JdyYrqt5qYRWvCqNYgCMsSGBIj8iAwqCGzZDl_vdPob3rUm52djUGufAm7BNDRU1kUzQSgzoxQHdqo3RTR_tBuJn8_cM9g3LXGMT
CitedBy_id crossref_primary_10_1016_S1872_5813_23_60340_8
crossref_primary_10_1080_05704928_2015_1092155
crossref_primary_10_1016_j_talanta_2020_121691
crossref_primary_10_1039_C5CC01771H
crossref_primary_10_1007_s00604_019_4098_x
crossref_primary_10_1016_j_surfin_2025_107327
crossref_primary_10_1021_acsbiomaterials_7b00943
crossref_primary_10_1016_j_bios_2016_05_064
crossref_primary_10_1039_C4CS00379A
crossref_primary_10_1002_cctc_201402735
crossref_primary_10_1007_s10895_023_03404_y
crossref_primary_10_1016_j_inoche_2021_108985
crossref_primary_10_1016_j_jphotobiol_2019_04_004
crossref_primary_10_1007_s00604_017_2545_0
crossref_primary_10_1016_j_cis_2024_103115
crossref_primary_10_1016_j_snb_2022_131881
crossref_primary_10_1007_s00604_021_04929_4
crossref_primary_10_1007_s10562_023_04540_7
crossref_primary_10_1007_s00604_022_05536_7
crossref_primary_10_1016_j_apsusc_2016_11_101
crossref_primary_10_1016_j_cej_2020_125487
crossref_primary_10_3390_nano12152624
crossref_primary_10_1007_s10895_015_1714_y
crossref_primary_10_1016_j_colsurfa_2022_130677
crossref_primary_10_1002_slct_202302425
crossref_primary_10_1016_j_talanta_2015_12_047
crossref_primary_10_1016_j_molliq_2024_125303
crossref_primary_10_1016_j_snb_2017_03_056
crossref_primary_10_1016_j_talanta_2017_12_040
crossref_primary_10_1007_s00339_023_07038_6
crossref_primary_10_1007_s13399_023_04650_7
crossref_primary_10_1016_j_jelechem_2018_10_044
crossref_primary_10_1039_C5AN01605C
crossref_primary_10_1016_j_jinorgbio_2020_111306
crossref_primary_10_1016_j_jlumin_2023_120303
crossref_primary_10_1080_01932691_2024_2440422
crossref_primary_10_1088_1361_6528_ad355a
crossref_primary_10_1002_macp_201800476
crossref_primary_10_1039_D5RA03280F
crossref_primary_10_1016_j_snb_2018_01_108
crossref_primary_10_1039_C4CP04982A
crossref_primary_10_1002_cctc_201500263
crossref_primary_10_1016_j_jcis_2020_12_051
crossref_primary_10_1088_1361_6528_ab1fef
crossref_primary_10_3389_fchem_2018_00470
crossref_primary_10_1016_j_materresbull_2024_113290
crossref_primary_10_1016_j_trac_2015_06_011
crossref_primary_10_3390_inorganics11060262
crossref_primary_10_1016_j_molliq_2023_122396
crossref_primary_10_1080_00387010_2020_1764589
crossref_primary_10_1007_s00604_019_4104_3
crossref_primary_10_3390_catal13081201
crossref_primary_10_3390_molecules25245798
crossref_primary_10_1007_s10853_023_08827_3
crossref_primary_10_1016_j_snb_2024_135458
crossref_primary_10_1039_C6AN00640J
crossref_primary_10_1016_j_snb_2017_11_011
crossref_primary_10_1016_j_diamond_2024_111079
crossref_primary_10_1016_j_mtchem_2024_102389
crossref_primary_10_1016_j_saa_2018_08_066
crossref_primary_10_1016_j_talanta_2016_01_029
crossref_primary_10_1016_j_snb_2016_12_100
crossref_primary_10_3390_md20120782
crossref_primary_10_1016_j_talanta_2016_08_011
crossref_primary_10_1007_s00216_016_9640_7
crossref_primary_10_1007_s10853_018_2017_x
crossref_primary_10_1016_j_mseb_2021_115084
crossref_primary_10_1016_j_nanoen_2019_05_074
crossref_primary_10_1016_j_arabjc_2023_105321
crossref_primary_10_1016_j_snb_2017_06_068
crossref_primary_10_1016_j_apsusc_2018_05_157
crossref_primary_10_1021_acsami_5c07628
crossref_primary_10_1016_j_cplett_2020_137646
crossref_primary_10_1016_j_ijhydene_2017_04_253
crossref_primary_10_1016_j_talanta_2019_120431
crossref_primary_10_1039_D5TB00603A
crossref_primary_10_1039_D0RA10679H
crossref_primary_10_1016_j_jallcom_2018_07_049
crossref_primary_10_1016_j_eurpolymj_2018_09_050
crossref_primary_10_1002_adom_202001150
crossref_primary_10_1007_s11696_023_02723_5
crossref_primary_10_1016_j_scitotenv_2023_163729
crossref_primary_10_1016_j_jlumin_2016_04_053
crossref_primary_10_1007_s10853_020_05200_6
crossref_primary_10_1016_j_jlumin_2022_119480
crossref_primary_10_1016_j_foodchem_2024_140297
crossref_primary_10_1016_j_microc_2023_109588
crossref_primary_10_1007_s10853_019_03995_7
crossref_primary_10_1080_1539445X_2017_1368558
crossref_primary_10_1016_j_cclet_2020_06_005
crossref_primary_10_1016_j_fpsl_2022_100876
crossref_primary_10_1093_nsr_nwv037
crossref_primary_10_1007_s10895_023_03559_8
crossref_primary_10_1016_j_colsurfa_2022_129377
crossref_primary_10_1080_00032719_2023_2283586
crossref_primary_10_1016_j_fuel_2019_01_151
crossref_primary_10_1088_2043_6262_7_1_015018
crossref_primary_10_3390_molecules28020541
crossref_primary_10_1039_C4AN01194E
crossref_primary_10_3390_chemosensors10110483
crossref_primary_10_1016_j_talanta_2016_05_028
crossref_primary_10_1016_j_snb_2017_06_088
crossref_primary_10_1039_D0RA04958A
crossref_primary_10_1007_s10895_019_02452_7
crossref_primary_10_1002_slct_201804040
crossref_primary_10_1016_j_snb_2018_04_036
crossref_primary_10_1016_j_apcatb_2017_03_005
crossref_primary_10_1007_s00216_019_01710_8
crossref_primary_10_1016_j_saa_2019_117671
crossref_primary_10_1016_j_electacta_2019_135172
crossref_primary_10_1016_j_cclet_2018_08_004
crossref_primary_10_1016_j_mtsust_2020_100053
crossref_primary_10_1088_1742_6596_1943_1_012012
crossref_primary_10_1016_j_matlet_2020_128985
crossref_primary_10_3389_fnut_2022_900215
crossref_primary_10_1016_j_saa_2015_09_037
crossref_primary_10_1016_j_snb_2015_07_008
crossref_primary_10_1016_j_microc_2018_12_021
crossref_primary_10_1016_j_molliq_2019_01_070
crossref_primary_10_3390_catal11030399
crossref_primary_10_3390_nano12030385
crossref_primary_10_1016_j_colsurfb_2020_111553
crossref_primary_10_1016_j_jclepro_2023_136106
crossref_primary_10_1039_C9PY01529A
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/la404270w
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
ExternalDocumentID 24308456
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.K2
4.4
53G
55A
5GY
5VS
7~N
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
DU5
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH9
IHE
JG~
LG6
NPM
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
YQT
~02
7X8
ID FETCH-LOGICAL-a444t-b73d18bdd676f86770e39c03eeff936b4db386eb2aa22286eab0b0b00677a43e2
IEDL.DBID 7X8
ISICitedReferencesCount 182
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329332000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-5827
IngestDate Thu Oct 02 11:46:30 EDT 2025
Mon Jul 21 06:05:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 52
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a444t-b73d18bdd676f86770e39c03eeff936b4db386eb2aa22286eab0b0b00677a43e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24308456
PQID 1490724184
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1490724184
pubmed_primary_24308456
PublicationCentury 2000
PublicationDate 2013-12-31
PublicationDateYYYYMMDD 2013-12-31
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2013
SSID ssj0009349
Score 2.5275943
Snippet Carbon dots (C-dots) have been proven to show the capability for direct reduction of Ag(+) to elemental silver (Ag(0)) without additional reducing agent or...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 16135
SubjectTerms Biosensing Techniques - instrumentation
Carbon - chemistry
Catalysis
Fluorescence
Metal Nanoparticles - chemistry
Reducing Agents - chemistry
Silver - chemistry
Spectroscopy, Fourier Transform Infrared
Title Growth and stabilization of silver nanoparticles on carbon dots and sensing application
URI https://www.ncbi.nlm.nih.gov/pubmed/24308456
https://www.proquest.com/docview/1490724184
Volume 29
WOSCitedRecordID wos000329332000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qCnrx_VhfRPBatk3SJjmJLK5eXPaguLclaRJdkHTdrvr3nfTBehEEKbSHEmiHycw3j8yH0JXlkiQONhIHfBsxYXgktbYRUSlAOaMzmbqKbIIPh2I8lqMm4VY2bZWtTawMtSnykCPvAZKPObgbwa5n71FgjQrV1YZCYxV1KECZ0NLFx8tp4ZJW8BdcVBylgvB2shBJem-KBZaJ-Ot3ZFl5mMH2f79tB2012BLf1Mqwi1as30Mb_ZbSbR8930HQvXjFyhsMqDD0xdanMHHhcDkNTdLYKw9xdNMuh-FVruYaHhC9lvXC0PLuX_CP0vcBehrcPvbvo4ZZIVKMsUWkOTWJ0MZkPHNhol1sqcxjaq1zkmaaGU1FBkG3UiFDlFml43CFcXOKUUsO0ZovvD1G2CSpcABTwHJqlmdEKg6gD2AdaIAUCe-iy1ZmE_jbUI5Q3hYf5WQptS46qgU_mdUjNiaE0VgAtjv5w-pTtEkCR0U1ffEMdRzsW3uO1vPPxbScX1QqAffh6OEbIx_BXA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+and+stabilization+of+silver+nanoparticles+on+carbon+dots+and+sensing+application&rft.jtitle=Langmuir&rft.au=Shen%2C+Liming&rft.au=Chen%2C+Meiling&rft.au=Hu%2C+Linlin&rft.au=Chen%2C+Xuwei&rft.date=2013-12-31&rft.issn=1520-5827&rft.eissn=1520-5827&rft.volume=29&rft.issue=52&rft.spage=16135&rft_id=info:doi/10.1021%2Fla404270w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5827&client=summon