Projection-Based Clustering through Self-Organization and Swarm Intelligence: Combining Cluster Analysis with the Visualization of High-Dimensional Data

Cluster Analysis; Dimensionality Reduction; Swarm Intelligence; Visualization; Unsupervised Machine Learning; Data Science; Knowledge Discovery; 3D Printing; Self-Organization; Emergence; Game Theory; Advanced Analytics; High-Dimensional Data; Multivariate Data; Analysis of Structured Data

Uloženo v:
Podrobná bibliografie
Hlavní autor: Christoph Thrun, Michael
Médium: E-kniha
Jazyk:angličtina
Vydáno: Cham Springer Nature 2018
Springer Open
Springer Gabler. in Springer Fachmedien Wiesbaden GmbH
Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH
Springer
Vydání:1
Témata:
ISBN:3658205407, 9783658205409, 3658205393, 9783658205393
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cluster Analysis; Dimensionality Reduction; Swarm Intelligence; Visualization; Unsupervised Machine Learning; Data Science; Knowledge Discovery; 3D Printing; Self-Organization; Emergence; Game Theory; Advanced Analytics; High-Dimensional Data; Multivariate Data; Analysis of Structured Data
AbstractList Cluster Analysis; Dimensionality Reduction; Swarm Intelligence; Visualization; Unsupervised Machine Learning; Data Science; Knowledge Discovery; 3D Printing; Self-Organization; Emergence; Game Theory; Advanced Analytics; High-Dimensional Data; Multivariate Data; Analysis of Structured Data
This open access book covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm (DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures. The clustering and number of clusters or an absence of cluster structure are verified by the 3D landscape at a glance. DBS is the first swarm-based technique that shows emergent properties while exploiting concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game theory. It results in the elimination of a global objective function and the setting of parameters. By downloading the R package DBS can be applied to data drawn from diverse research fields and used even by non-professionals in the field of data mining.
This open access book covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm (DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures. The clustering and number of clusters or an absence of cluster structure are verified by the 3D landscape at a glance. DBS is the first swarm-based technique that shows emergent properties while exploiting concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game theory. It results in the elimination of a global objective function and the setting of parameters. By downloading the R package DBS can be applied to data drawn from diverse research fields and used even by non-professionals in the field of data mining. 
Author Christoph Thrun, Michael
Author_xml – sequence: 1
  fullname: Christoph Thrun, Michael
BookMark eNqNkU1v1DAQhoP4ELRUnBE9-ICEOAQcf8R2JQ7tttBKVRepqFfLScZZt1672Nmtyi_h55L9KPSIfLBm5vE743l3imchBiiKtxX-VGEsPishS1rWXJYEc4ZL9aTYoWO4jsTTx8GL4s10cnGAKlwpKQin-GWxl_M1xusErumr4vf3FK-hHVwM5ZHJ0KGJX-QBkgs9GmYpLvoZugRvy2nqTXC_zApFJnTo8s6kOToLA3jveggtHKBJnDcurN5uZdBhMP4-u4zu3DAbFQFdubww_kEpWnTq-ll57OYQ8pgxHh2bwbwunlvjM-xt793i6uvJj8lpeT79djY5PC8NY0zyErqOtaI2vLKVUEJgK1TLLLcgbCe7itYNZmOp4YZY1tSsYtQq3NQSmo5TS3cLvRFuXONdbKJJnY63EBJkMKmdedckk-51NE4_Zto4162tjFXMaCmV1cwwqyWplGYWAzF2PG0zdni_6RCXkLrklqCbGG-ynh5fjFaMrhIp5Yh93GAm38BdnkU_ZL30sGFH3_86q0b2w4a9TfHnAvKg11gLYUjG65OjSc0IEbT-D5JzpZhakftbEpKHPm6HJJRKSlblL9tfmHE5-ja5-cNW_m1oVYmp1wRrjrGuSM2FJkLQ1cjvHr_votnoU0YFp38ANenlFA
ContentType eBook
Copyright https://creativecommons.org/licenses/by/4.0/legalcode
Copyright_xml – notice: https://creativecommons.org/licenses/by/4.0/legalcode
DBID V1H
A7I
YSPEL
AHRNR
BIANM
DOI 10.1007/978-3-658-20540-9
DatabaseName DOAB: Directory of Open Access Books
OAPEN
Perlego
OverDrive Ebooks
Open Research Library (Open Access)
DatabaseTitleList





Database_xml – sequence: 1
  dbid: V1H
  name: DOAB: Directory of Open Access Books
  url: https://directory.doabooks.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Mathematics
EISBN 3658205407
9783658205409
Edition 1
1st ed. 2018.
ExternalDocumentID oai_biblioboard_com_cf1af94a_889f_4a4f_8219_4f0e2afafacb
ODN0010072888
9783658205409
EBC6422736
EBC5599496
2338326
oai_library_oapen_org_20_500_12657_27739
34375
Genre Electronic books
GroupedDBID 0D6
0DA
38.
A7I
AABBV
AAKKN
AALJR
AAQKC
ABEEZ
ABFTD
ABPUQ
ACBYE
ACOUV
ADIEE
ADOGT
ADOJN
AEJLV
AEKFX
AEZAY
AGWHU
AHRNR
AIQUZ
ALMA_UNASSIGNED_HOLDINGS
ALNDD
ANXHU
AZZ
BBABE
BIANM
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EIXGO
FOYMO
IEZ
NQNQZ
OEBZI
PYIOH
SBO
TPJZQ
V1H
YSPEL
Z7R
Z7X
Z81
Z83
Z84
Z85
Z88
ID FETCH-LOGICAL-a44485-edd4c76a51f179770f79c4f5fe7fd8d136b04f17b5a2f4b64143f90b68ebd53f3
IEDL.DBID V1H
ISBN 3658205407
9783658205409
3658205393
9783658205393
IngestDate Tue Dec 02 16:38:02 EST 2025
Fri Jul 04 04:35:15 EDT 2025
Sun Jun 08 03:49:20 EDT 2025
Tue Jun 10 23:42:40 EDT 2025
Fri May 30 23:02:43 EDT 2025
Tue Dec 02 16:07:01 EST 2025
Mon Dec 01 21:19:36 EST 2025
Wed Oct 08 01:16:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q337.5TK7882.P3QA76.
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a44485-edd4c76a51f179770f79c4f5fe7fd8d136b04f17b5a2f4b64143f90b68ebd53f3
Notes Electronic reproduction. Dordrecht: Springer Vieweg, 2018. Requires the Libby app or a modern web browser.
MODID-eea0d14d732:Springer Open
OCLC OCN: 1019872530
1019872530
1076259214
1231610904
OpenAccessLink https://directory.doabooks.org/handle/20.500.12854/34375
PQID EBC5599496
PageCount 210
ParticipantIDs biblioboard_openresearchlibrary_oai_biblioboard_com_cf1af94a_889f_4a4f_8219_4f0e2afafacb
overdrive_books_ODN0010072888
askewsholts_vlebooks_9783658205409
proquest_ebookcentral_EBC6422736
proquest_ebookcentral_EBC5599496
perlego_books_2338326
oapen_primary_oai_library_oapen_org_20_500_12657_27739
oapen_doabooks_34375
PublicationCentury 2000
PublicationDate 2018
2018-01-09
2018.
2018-01-01T00:00:00Z
PublicationDateYYYYMMDD 2018-01-01
2018-01-09
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Wiesbaden
PublicationYear 2018
Publisher Springer Nature
Springer Open
Springer Gabler. in Springer Fachmedien Wiesbaden GmbH
Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH
Springer
Publisher_xml – name: Springer Nature
– name: Springer Open
– name: Springer Gabler. in Springer Fachmedien Wiesbaden GmbH
– name: Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH
– name: Springer
SSID ssj0001987063
Score 2.3448634
Snippet Cluster Analysis; Dimensionality Reduction; Swarm Intelligence; Visualization; Unsupervised Machine Learning; Data Science; Knowledge Discovery; 3D Printing;...
This open access book covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to...
SourceID biblioboard
overdrive
askewsholts
proquest
perlego
oapen
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms 3D Printing
Advanced Analytics
Analysis of Structured Data
Cluster Analysis
Computer Technology
Data Science
Dimensionality Reduction
Emergence
Game Theory
High-Dimensional Data
Knowledge Discovery
Mathematics
Mathematics and Science
Multivariate Data
Nonfiction
Self-Organization
Swarm Intelligence
Unsupervised Machine Learning
Visualization
SubjectTermsDisplay Computer Technology.
Electronic books.
Nonfiction.
TableOfContents 6.1.7 Mean Relative Rank Error (MRRE) and the Co-ranking Matrix -- 6.1.8 Precision and Recall -- 6.1.9 Rescaled Average Agreement Rate (RAAR) -- 6.1.10 Stress and the Shepard Diagram -- 6.1.11 Topographic Product -- 6.1.12 Topographic Function (TF) -- 6.1.13 Trustworthiness and Discontinuity (T&amp -- D) -- 6.1.14 U-ranking -- 6.1.15 Overall Correlations: Topological Index (TI) and Topological Correlation (TC) -- 6.1.16 Zrehen's Measure -- 6.2 Types of Quality Measures for Assessing Structure Preservation -- 6.2.1 Theoretical Assessment of Quality Measures -- 6.2.2 Practical Assessment of Quality Measures -- 6.3 Introducing the Delaunay Classification Error (DCE) -- 6.3.1 Summary -- 7 Behavior-based Systems in Data Science -- 7.1 Artificial Behavior Based on DataBots -- 7.1.1 Swarm-Organized Projection (SOP) -- 7.2 Swarm Intelligence for Unsupervised Machine Learning -- 7.3 Missing Links: Emergence and Game Theory -- 8 Databionic Swarm (DBS) -- 8.1 Projection with Pswarm -- 8.1.1 Motivation: Game Theory -- 8.1.2 Symmetry Considerations -- 8.1.3 Algorithm -- 8.1.4 Data-driven Annealing Scheme -- 8.1.5 Annealing Interval -- 8.1.6 Convergence -- 8.2 Comparing Pswarm with a Previously Developed Approach -- 8.2.1 Neighborhood Definition -- 8.2.2 Annealing Scheme -- 8.2.3 Swarm Intelligence and Self-Organization -- 8.3 Clustering on a Generalized U*-Matrix -- 9 Experimental Methodology -- 9.1 Data Sets -- 9.1.1 Atom -- 9.1.2 Chainlink -- 9.1.3 EngyTime -- 9.1.4 Golf Ball -- 9.1.5 Hepta -- 9.1.6 Iris -- 9.1.7 Leukemia -- 9.1.8 Lsun3D -- 9.1.9 S-shape -- 9.1.10 Swiss Banknotes -- 9.1.11 Target -- 9.1.12 Tetra -- 9.1.13 Tetragonula -- 9.1.14 Cuboid -- 9.1.15 Two Diamonds -- 9.1.16 Wine -- 9.1.17 Wing Nut -- 9.1.18 World Gross Domestic Product (World GDP) -- 9.2 Parameter Settings -- 9.2.1 Quality Measures (QMs) -- 9.2.2 Projection Methods
Intro -- Acknowledgments -- Table of contents -- List of figures -- List of tables -- Zusammenfassung -- Abstract -- 1 Introduction -- 2 Fundamentals -- 2.1 Basic Definitions -- 2.2 Concepts of Graph Theory Applied to Patterns -- 2.3 Overview of Knowledge Discovery -- 2.3.1 Feature Selection -- 2.3.2 Preprocessing -- 2.3.3 Feature Extraction -- 2.3.3.1 Transformations -- 2.3.3.2 Dimensionality Reduction -- 2.3.4 Cluster Analysis -- 2.3.5 An Approach to Knowledge Acquisition -- 3 Approaches to Cluster Analysis -- 3.1 Common Clustering Methods -- 3.2 Structure of Natural Clusters -- 3.2.1 Types of Structures Sought by Clustering Algorithms -- 3.2.2 Quality of Clustering -- 3.2.2.1 Heatmaps -- 3.2.2.2 Silhouette plots -- 3.3 Problems with Clustering Methods -- 4 Methods of Projection -- 4.1 Common Approaches -- 4.1.1 Principal Component Analysis (PCA) -- 4.1.2 Independent Component Analysis (ICA) -- 4.1.3 Non-linear metric multidimensional scaling (MDS) techniques -- 4.1.4 Curvilinear Component Analysis (CCA) -- 4.1.5 t-Distributed Stochastic Neighbor Embedding (t-SNE) -- 4.1.6 Neighborhood Retrieval Visualizer (NeRV) -- 4.2 Emergent Self-Organizing Map (ESOM) -- 4.2.1 Visualizations of SOMs -- 4.2.2 Clustering with ESOM -- 4.3 Types of Projection Methods -- 5 Visualizing the Output Space -- 5.1 Examples -- 5.2 Structure Preservation -- 5.3 Generating a Topographic Map from the Generalized U*-matrix -- 5.3.1 Simplified ESOM -- 5.3.2 U*-Matrix Calculation -- 5.3.3 Topographic Map with Hypsometric Tints -- 5.3.4 Limitations -- 6 Quality Assessments of Visualizations -- 6.1 Common Quality Measures (QMs) -- 6.1.1 Classification Error (CE) -- 6.1.2 C Measure -- 6.1.3 Two Variants of the C Measure: Minimal Path Length and Minimal Wiring -- 6.1.4 Force Approach Error -- 6.1.5 König's Measure -- 6.1.6 Local Continuity Meta-Criterion (LCMC)
9.2.2.1 Swarm-Organized Projection (SOP) -- 9.2.2.2 Pswarm -- 9.2.3 Common clustering algorithms -- 9.3 Gene Ontology (GO) -- 9.3.1 Overrepresentation Analysis (ORA) -- 9.3.2 Filtering via ABC Analysis -- 10 Results on Pre-classified Data Sets -- 10.1 Comparison with Given Classifications -- 10.1.1 Recognition of the Absence of Clusters -- 10.2 Evaluation of Projections Using the Delaunay Classification Error (DCE) -- 10.3 Topographic Maps with Hypsometric Colors -- 11 DBS on Natural Data Sets -- 11.1 Types of Leukemia -- 11.2 World Gross Domestic Product (World GDP) -- 11.3 Tetragonula Bees -- 12 Knowledge Discovery with DBS -- 12.1 Hydrology -- 12.1.1 Knowledge Acquisition and Prediction in the Hydrology Data Set -- 12.2 Pain Genes -- 12.2.1 Prior Knowledge -- 12.2.2 Knowledge Acquisition in Clusters of Pain Genes -- 13 Discussion -- 14 Conclusion -- References -- Appendices -- Supplement A: Evaluation of Common QMs -- Supplement B: Wine Dataset Distance Distribution -- Supplement C: Generalized Umatrix of Pswarm and SOP -- Supplement D: DBS Visualizations of S-shape and uniform Cuboid -- Supplement E: U-Matrix Visualizations of ESOM Projections -- Supplement F: Statistical Tests in Hydrology -- Supplement G: 3D Prints of Generalized Umatrix Visualizations of DBS -- Supplement H: Contingency Table for Tetragonula Bees Clustering -- Index
Title Projection-Based Clustering through Self-Organization and Swarm Intelligence: Combining Cluster Analysis with the Visualization of High-Dimensional Data
URI https://directory.doabooks.org/handle/20.500.12854/34375
http://library.oapen.org/handle/20.500.12657/27739
https://www.perlego.com/book/2338326/projectionbased-clustering-through-selforganization-and-swarm-intelligence-combining-cluster-analysis-with-the-visualization-of-highdimensional-data-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5599496
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6422736
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783658205409
http://link.overdrive.com/?titleID=10072888&websiteID=
https://openresearchlibrary.org/viewer/cf1af94a-889f-4a4f-8219-4f0e2afafacb
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGhgR9GWxDBNhkIV4NieP4g8e1m7aXMmmo6ptlJ7aoVpqq6bZ_ZX8uZyfZgkA8oEpV04vOSe5yX7Z_h9AnpYxQylFSBZhLVviUWOkzYsF7ewFfaWVjswkxncr5XF3tINnvhWkNeR1WNdcmxJlNnM5vIQcgU_9cpAERQRbsS85yUTxDe5Dh8LCYa5ZdPFVXVJi_C00ccnCxNMQlooXbeTxW_RxnBzObE6CQSCIQb45McwNmBkzQtoEju7DLRW1rEFtojWTWbjVCL8Iqy2oDZgmi57XbQKJf_2HTo6M63___W3yF9lzY-PAa7bjVAdrv2z3g7u0_QKMBduEherhqazggV3IKrrDC4-VtQF0AKu66_-Brt_RkuN0Tw_D4-t5sfuLLARjoVwzD2diromeDe7gUHErFwNHh2aIJW0A7TrXHYZEKmYT-BC22CJ6YrTlCs_Oz7-ML0rV5IIZBclgQV1WsFNwUmQfzIETqhSqZL7wTvpJVlnObMiDZwlDPLGcQ43mVWi6drYrc52_Q7qpeubcIp9xboLCqNOACWG4EhJScwk-qgKtL0MeBXPXdMk5JN_o3xUjQfCBuHdqYdchLP7rSmg6g3MNzwDro0mfGK2a0lMprZpjXEvyBZj511Hj4lDZBh1F3dC96HUWcIN7-vW4hRiL_p7ECBVRE01SDbuiM8kJoKkQOl3r8qIO6ZfhtMg2JfiqolDJBR51edlQaShKUJwj3WqrjI-iWAuuz03HAoINX6l-nwOOEsJe_-_vdvEcvIayUbaHqA9rdbm7dMXpe3m0XzeYEshdxeRJf1185Oz-k
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Projection-Based+Clustering+through+Self-Organization+and+Swarm+Intelligence%3A+Combining+Cluster+Analysis+with+the+Visualization+of+High-Dimensional+Data&rft.au=Michael+Christoph+Thrun&rft.date=2018-01-01&rft.pub=Springer+Open&rft.isbn=9783658205393&rft_id=info:doi/10.1007%2F978-3-658-20540-9&rft.externalDBID=YSPEL&rft.externalDocID=2338326
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fopen_research_library_iudilif%2F9783658205393.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97836582%2F9783658205409.jpg