Stochastic analysis of transient flow in unsaturated heterogeneous soils

A stochastic unsaturated water flow model is developed for heterogeneous soils subject to a transient flow regime. Equations are developed for a fully three‐dimensional soil profile, and results are presented for an example one‐dimensional problem. The model predicts the mean and covariance of the s...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research Vol. 36; no. 4; pp. 891 - 910
Main Authors: Foussereau, X., Graham, W. D., Rao, P. S. C.
Format: Journal Article
Language:English
Published: Blackwell Publishing Ltd 01.04.2000
Subjects:
ISSN:0043-1397, 1944-7973
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A stochastic unsaturated water flow model is developed for heterogeneous soils subject to a transient flow regime. Equations are developed for a fully three‐dimensional soil profile, and results are presented for an example one‐dimensional problem. The model predicts the mean and covariance of the soil water content, Darcy's flux, and pore water velocity as a function of the boundary flux and saturated hydraulic conductivity statistics. The statistics of the pore water velocity can be used to predict solute transport in soils, as shown by Foussereau et al. [this issue]. Approximate flow‐related moment equations are solved analytically in the Laplace domain. Then, the analytical results are numerically inverted using a modified fast Fourier transform algorithm. The model predictions are compared to results obtained from Monte Carlo simulations for two different boundary flux patterns characteristic of humid climates and two different soil types (a fine sand and a sandy loam). Comparing the approximate solutions of the statistical moments to the outputs of the Monte Carlo simulations shows (1) the dominance of the boundary flux variability over that of the saturated conductivity on the overall prediction uncertainty, particularly at shallow depths, and (2) the good performance of the stochastic unsaturated flow model, particularly for fine‐textured soils subject to boundary fluxes with coefficients of variation up to ∼1.5. As the boundary flux coefficient of variation increases and the soil becomes coarser, the model performance deteriorates because the flow system becomes significantly more nonlinear.
AbstractList A stochastic unsaturated water flow model is developed for heterogeneous soils subject to a transient flow regime. Equations are developed for a fully three‐dimensional soil profile, and results are presented for an example one‐dimensional problem. The model predicts the mean and covariance of the soil water content, Darcy's flux, and pore water velocity as a function of the boundary flux and saturated hydraulic conductivity statistics. The statistics of the pore water velocity can be used to predict solute transport in soils, as shown by Foussereau et al. [this issue]. Approximate flow‐related moment equations are solved analytically in the Laplace domain. Then, the analytical results are numerically inverted using a modified fast Fourier transform algorithm. The model predictions are compared to results obtained from Monte Carlo simulations for two different boundary flux patterns characteristic of humid climates and two different soil types (a fine sand and a sandy loam). Comparing the approximate solutions of the statistical moments to the outputs of the Monte Carlo simulations shows (1) the dominance of the boundary flux variability over that of the saturated conductivity on the overall prediction uncertainty, particularly at shallow depths, and (2) the good performance of the stochastic unsaturated flow model, particularly for fine‐textured soils subject to boundary fluxes with coefficients of variation up to ∼1.5. As the boundary flux coefficient of variation increases and the soil becomes coarser, the model performance deteriorates because the flow system becomes significantly more nonlinear.
A stochastic unsaturated water flow model is developed for heterogeneous soils subject to a transient flow regime. Equations are developed for a fully three-dimensional soil profile, and results are presented for an example one-dimensional problem. The model predicts the mean and covariance of the soil water content, Darcy's flux, and pore water velocity as a function of the boundary flux and saturated hydraulic conductivity statistics. The statistics of the pore water velocity can be used to predict solute transport in soils, as shown by Foussereau et al. [this issue]. Approximate flow-related moment equations are solved analytically in the Laplace domain. Then, the analytical results are numerically inverted using a modified fast Fourier transform algorithm. The model predictions are compared to results obtained from Monte Carlo simulations for two different boundary flux patterns characteristic of humid climates and two different soil types (a fine sand and a sandy loam). Comparing the approximate solutions of the statistical moments to the outputs of the Monte Carlo simulations shows (1) the dominance of the boundary flux variability over that of the saturated conductivity on the overall prediction uncertainty, particularly at shallow depths, and (2) the good performance of the stochastic unsaturated flow model, particularly for fine-textured soils subject to boundary fluxes with coefficients of variation up to similar to 1.5. As the boundary flux coefficient of variation increases and the soil becomes coarser, the model performance deteriorates because the flow system becomes significantly more nonlinear.
A stochastic unsaturated water flow model is developed for heterogeneous soils subject to a transient flow regime. Equations are developed for a fully three‐dimensional soil profile, and results are presented for an example one‐dimensional problem. The model predicts the mean and covariance of the soil water content, Darcy's flux, and pore water velocity as a function of the boundary flux and saturated hydraulic conductivity statistics. The statistics of the pore water velocity can be used to predict solute transport in soils, as shown by Foussereau et al. [this issue]. Approximate flow‐related moment equations are solved analytically in the Laplace domain. Then, the analytical results are numerically inverted using a modified fast Fourier transform algorithm. The model predictions are compared to results obtained from Monte Carlo simulations for two different boundary flux patterns characteristic of humid climates and two different soil types (a fine sand and a sandy loam). Comparing the approximate solutions of the statistical moments to the outputs of the Monte Carlo simulations shows (1) the dominance of the boundary flux variability over that of the saturated conductivity on the overall prediction uncertainty, particularly at shallow depths, and (2) the good performance of the stochastic unsaturated flow model, particularly for fine‐textured soils subject to boundary fluxes with coefficients of variation up to ∼1.5. As the boundary flux coefficient of variation increases and the soil becomes coarser, the model performance deteriorates because the flow system becomes significantly more nonlinear.
Author Foussereau, X.
Graham, W. D.
Rao, P. S. C.
Author_xml – sequence: 1
  givenname: X.
  surname: Foussereau
  fullname: Foussereau, X.
– sequence: 2
  givenname: W. D.
  surname: Graham
  fullname: Graham, W. D.
– sequence: 3
  givenname: P. S. C.
  surname: Rao
  fullname: Rao, P. S. C.
BookMark eNqFkE1LAzEQhoMoWD9u_oA9eXI12WSTnaNU2wqiUCs9hnQ3sdFtoklK7b93tSIiqKe5PM-8M-8e2nbeaYSOCD4luIAzAgDTMWBMWbGFegQYywUIuo16GDOaEwpiF-3F-IgxYSUXPTS6S76eq5hsnSmn2nW0MfMmS0G5aLVLmWn9KrMuW7qo0jKopJtsrpMO_kE77Zcxi9628QDtGNVGffg599H94HLSH-XXt8Or_vl1rhgVkNe4MYQzU1AzI8KYagYaBBEMgGHcCEY5B8OYUbMCAzFNWTWNoWVpeM0Z1XQfHW_2Pgf_stQxyYWNtW5b9XGMZFX3MOf0X5CILpRVVQcWG7AOPsagjaxtUsl615VgW0mwfG9Xfm-3k05-SM_BLlRY_4Z_Zqxsq9d_snI67o8rRqGT8o1kY9KvX5IKT5ILKko5vRnKi8HkbjDpg5zQN1z8m3A
CitedBy_id crossref_primary_10_1029_2005WR004795
crossref_primary_10_1002_2014WR015562
crossref_primary_10_1016_j_agwat_2020_106426
crossref_primary_10_3390_w9020134
crossref_primary_10_1029_2000WR900389
crossref_primary_10_1023_A_1025755920876
crossref_primary_10_2136_vzj2005_0024
crossref_primary_10_1002_2015MS000516
crossref_primary_10_2136_vzj2002_1370
crossref_primary_10_1016_j_jhydrol_2014_11_076
crossref_primary_10_2136_vzj2006_0055
crossref_primary_10_2136_vzj2015_07_0103
crossref_primary_10_1029_2008WR007157
crossref_primary_10_3390_w14030295
crossref_primary_10_2136_vzj2012_0105
crossref_primary_10_1061__ASCE_GM_1943_5622_0001563
crossref_primary_10_1029_2001WR000515
crossref_primary_10_1016_j_jhydrol_2020_125420
crossref_primary_10_1029_2009WR008307
crossref_primary_10_1002_hyp_419
crossref_primary_10_1016_j_jhydrol_2006_03_024
crossref_primary_10_1016_j_advwatres_2010_12_007
crossref_primary_10_1016_j_advwatres_2004_05_007
crossref_primary_10_1029_2007WR006170
crossref_primary_10_1016_S0022_1694_03_00042_8
crossref_primary_10_2136_vzj2004_1540
Cites_doi 10.1029/WR025i012p02465
10.1029/96WR00502
10.1029/WR014i005p00741
10.1029/92WR01957
10.1029/93WR02883
10.1029/WR014i005p00731
10.1029/WR018i002p00363
10.1029/WR023i001p00037
10.1029/1998WR900126
10.2136/sssaj1979.03615995004300030008x
10.1029/1998WR900027
10.1029/WR014i005p00713
10.1029/93WR02882
10.1029/WR025i007p01575
10.1029/93WR00321
10.1029/WR023i001p00047
10.1029/WR014i005p00722
10.1029/WR021i004p00457
10.1029/91WR01115
10.1029/WR014i005p00765
10.1029/98WR00317
10.1029/92WR01241
10.1029/92WR00166
10.1029/WR014i005p00705
10.1016/S0309-1708(98)00010-4
10.1029/WR023i001p00057
10.1029/WR021i004p00465
10.1029/WR014i005p00749
10.1029/98WR00435
10.1029/96WR03978
10.1029/97WR03619
10.1029/91WR00762
10.1029/90WR02105
10.1029/WR021i004p00447
ContentType Journal Article
Copyright Copyright 2000 by the American Geophysical Union.
Copyright_xml – notice: Copyright 2000 by the American Geophysical Union.
DBID BSCLL
AAYXX
CITATION
7QH
7UA
C1K
7S9
L.6
DOI 10.1029/1999WR900342
DatabaseName Istex
CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Aqualine

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage 910
ExternalDocumentID 10_1029_1999WR900342
WRCR8439
ark_67375_WNG_DFTSFTC9_T
Genre article
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFFHD
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIQQE
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WIN
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
3V.
A00
AAHHS
AAYOK
ABTAH
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
GROUPED_ABI_INFORM_COMPLETE
WYJ
AAYXX
CITATION
7QH
7UA
C1K
7S9
L.6
ID FETCH-LOGICAL-a4379-c0df164f23fb17ff8b9e9717499400d743669f44fab2091fd58ddf355f6c643e3
IEDL.DBID WIN
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000086090000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Sun Aug 24 03:50:58 EDT 2025
Tue Oct 07 09:39:33 EDT 2025
Sat Nov 29 04:00:28 EST 2025
Tue Nov 18 22:22:03 EST 2025
Wed Jan 22 16:50:08 EST 2025
Tue Nov 11 03:33:36 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4379-c0df164f23fb17ff8b9e9717499400d743669f44fab2091fd58ddf355f6c643e3
Notes istex:7F170FA80586DB3913B933A5E41AAD5BE35239DB
ark:/67375/WNG-DFTSFTC9-T
ArticleID:1999WR900342
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/1999WR900342
PQID 17749488
PQPubID 23462
PageCount 20
ParticipantIDs proquest_miscellaneous_48973663
proquest_miscellaneous_17749488
crossref_citationtrail_10_1029_1999WR900342
crossref_primary_10_1029_1999WR900342
wiley_primary_10_1029_1999WR900342_WRCR8439
istex_primary_ark_67375_WNG_DFTSFTC9_T
PublicationCentury 2000
PublicationDate April 2000
PublicationDateYYYYMMDD 2000-04-01
PublicationDate_xml – month: 04
  year: 2000
  text: April 2000
PublicationDecade 2000
PublicationTitle Water resources research
PublicationTitleAlternate Water Resour. Res
PublicationYear 2000
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Harter, T., D. Zhang, Water flow and solute spreading in heterogeneous soils with spatially variable water content, Water Resour. Res., 35, 415-426, 1999.
Dagan, G., E. Bresler, Solute dispersion in unsaturated heterogenous soil at field scale, 1, Theory, Soil Sci. Soc. Am. J., 43, 461-466, 1979.
Harter, T., T.-C. J. Yeh, Stochastic analysis of solute transport in heterogeneous, variably saturated soils, Water Resour. Res., 32, 1585-1595, 1996.
Foussereau, X., W. D. Graham, G. A. Akpoji, G. Destouni, andP. S. C. Rao, Stochastic analysis of transport in unsaturated heterogeneous soils under transient flow regimes,Water Resour. Res., 4.
Yeh, T. C., L. W. Gelhar, A. L. Gutjahr, Stochastic analysis of unsaturated flow in heterogeneous soils, 1, Statistically isotropic media, Water Resour. Res., 21, 447-456, 1985a.
Mood, A. M., F. A. Graybill, D. C. Boes, Introduction to the Theory of Statistics3, McGraw-Hill, New York, 1974.
Polmann, D. J., D. McLaughlin, S. Luis, L. W. Gelhar, R. Abadou, Stochastic modeling of large-scale flow in heterogeneous unsaturated soils, Water Resour. Res., 27, 1447-1458, 1991.
Destouni, G., Applicability of the steady state flow assumption for solute advection in field soils, Water Resour. Res., 27, 2129-2140, 1991.
Katul, G., P. Todd, D. Pataki, Soil water depletion by oak trees and the influence of root water uptake on the moisture content spatial statistics, Water Resour. Res., 33, 611-623, 1997.
Russo, D., J. Zaidel, A. Laufer, Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil, Water Resour. Res., 34, 1451-1468, 1998.
Russo, D., Stochastic analysis of flow and transport in unsaturated heterogeneous porous formation: Effects of variability in water saturation, Water Resour. Res., 34, 569-581, 1998.
Mantoglou, A., L. W. Gelhar, Stochastic modeling of large-scale transient unsaturated flow systems, Water Resour. Res., 23, 37-46, 1987c.
Gelhar, L. W., Stochastic Subsurface Hydrology, Prentice-Hall, Englewood Cliffs, N. J., 1993.
Jury, W. A., R. Roth, Transfer Function and Solute Movement Through Soil: Theory and Applications, Birkhauser, Basel, Switzerland, 1990.
Eagleson, P. S., Climate, soil, and vegetation, 1, Introduction to water balance dynamics, Water Resour. Res., 14, 705-712, 1978a.
Russo, D., Stochastic modeling of solute flux in a heterogenous partially saturated porous formation, Water Resour. Res., 29, 1731-1744, 1993b.
Russo, D., J. Zaidel, A. Laufer, Stochastic analysis of solute transport in partially saturated heterogeneous soil, 1, Numerical experiments, Water Resour. Res., 30, 769-779, 1994a.
Harter, T., T.-C. J. Yeh, Flow in unsaturated random porous media, nonlinear numerical analysis and comparison to analytical stochastic models, Adv. Water Resour., 22, 257-272, 1998.
Yeh, T. C., L. W. Gelhar, A. L. Gutjahr, Stochastic analysis of unsaturated flow in heterogeneous soils, 3, Observation and applications, Water Resour. Res., 21, 465-471, 1985c.
Zhang, D., T. C. Wallstrom, C. L. Winter, Stochastic analysis of steady state unsaturated flow in heterogeneous media: Comparison of the Brooks-Corey model and Gardner-Russo models, Water Resour. Res., 34, 1437-1449, 1998.
Eagleson, P. S., Climate, soil, and vegetation, 3, A simplified model of soil moisture movement in the liquid phase, Water Resour. Res., 14, 722-730, 1978c.
Wolfram, S., Mathematica, A System for Doing Mathematics by Computer2, Addison-Wesley-Longman, Reading, Mass., 1991.
Eagleson, P. S., Climate, soil, and vegetation, 5, A derived distribution of storm surface runoff, Water Resour. Res., 14, 741-748, 1978e.
Russo, D., J. Zaidel, A. Laufer, Stochastic analysis of solute transport in partially saturated heterogeneous soil, 2, Prediction of solute spreading and breakthrough, Water Resour. Res., 30, 781-790, 1994b.
Destouni, G., The effect of vertical soil heterogeneity on field scale solute flux, Water Resour. Res., 28, 1303-1309, 1992.
Eagleson, P. S., Climate, soil, and vegetation, 6, Dynamics of the annual water balance, Water Resour. Res., 14, 749-764, 1978f.
Jury, W. A., G. Sposito, R. White, A transfer function model of solute transport through soil, 1, Fundamental concepts, Soil Sci. Soc. Am. J., 22, 243-247, 1986.
Journel, A. G., C. J. Huijbrecht, Mining Geostatistics, Academic, San Diego, Calif., 1978.
Laliberte, G. E., A. T. Corey, R. H. Brooks, Properties of unsaturated porous media, Hydrol. Pap., 17, Colo. State Univ., Fort Collins, 1966.
Mantoglou, A., L. W. Gelhar, Capillary tension head variance, mean soil moisture content, and effective specific soil moisture capacity of transient unsaturated flow in stratified soils, Water Resour. Res., 23, 47-56, 1987a.
Russo, D., Stochastic analysis of simulated vadose zone solute transport in a vertical cross section of heterogeneous soil during non-steady water flow, Water Resour. Res., 27, 267-283, 1991.
Zhang, D., Nonstationary stochastic analysis of transient unsaturated flow in heterogeneous media, Water Resour. Res., 35, 1127-1141, 1999.
Jury, W. A., J. Gruber, A stochastic analysis of the influence of soil and climatic variability on the estimate of pesticide groundwater pollution potential, Water Resour. Res., 25, 2465-2474, 1989.
Jury, W. A., Simulation of solute transport using a transfer function model, Water Resour. Res., 18, 363-368, 1982.
Russo, D., Stochastic modeling of macrodispersion for solute transport in a heterogeneous unsaturated porous formation, Water Resour. Res., 29, 383-397, 1993a.
Eagleson, P. S., Climate, soil, and vegetation, 4, The expected value of annual evaporation, Water Resour. Res., 14, 731-739, 1978d.
Mantoglou, A., L. W. Gelhar, Effective hydraulic conductivities of transient unsaturated flow in stratified soils, Water Resour. Res., 23, 57-67, 1987b.
Kendall, M., A. Stuart, The Advanced Theory of Statistics, 3, MacMillan, New York, 1977.
Butters, G. L., W. A. Jury, F. F. Ernst, Field scale transport of bromide in an unsaturated soil, 1, Experimental methodology and results, Water Resour. Res., 25, 1575-1581, 1989.
Eagleson, P. S., Climate, soil, and vegetation, 2, The distribution of annual precipitation derived from observed storm sequences, Water Resour. Res., 14, 713-721, 1978b.
Yeh, T. C., L. W. Gelhar, A. L. Gutjahr, Stochastic analysis of unsaturated flow in heterogeneous soils, 2, Statistically anisotropic media with variable a, Water Resour. Res., 21, 457-464, 1985b.
Brooks, R. H., A. T. Corey, Hydraulic properties of porous media, Hydrol. Pap., 3, Colo. State Univ., Fort Collins, 1964.
Eagleson, P. S., Climate, soil, and vegetation, 7, A derived distribution of annual water yield, Water Resour. Res., 14, 765-776, 1978g.
Parlange, M. B., G. G. Katul, R. H. Cuenca, M. L. Kavvas, D. R. Nielsen, M. Mata, Physical basis for a time series model of soil water content, Water Resour. Res., 28, 2437-2446, 1992.
1966; 17
1993; 29
1982; 18
1964; 3
1997
1974
1995
1993
1978; 14
1991
1989; 25
1985; 21
1996; 32
1998; 22
1978
1999
1987; 23
1991; 27
1990
1997; 33
1986; 22
1992; 28
1999; 35
1977; 3
1984
1979; 43
1998; 34
1994; 30
e_1_2_1_20_1
e_1_2_1_41_1
Jury W. A. (e_1_2_1_26_1) 1986; 22
e_1_2_1_24_1
e_1_2_1_45_1
Foussereau X. (e_1_2_1_16_1)
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_6_1
e_1_2_1_12_1
Mei C. C. (e_1_2_1_34_1) 1997
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_18_1
Jury W. A. (e_1_2_1_25_1) 1990
Mood A. M. (e_1_2_1_35_1) 1974
e_1_2_1_42_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_21_1
e_1_2_1_44_1
Gelhar L. W. (e_1_2_1_17_1) 1993
e_1_2_1_27_1
e_1_2_1_48_1
e_1_2_1_29_1
Journel A. G. (e_1_2_1_22_1) 1978
Wolfram S. (e_1_2_1_47_1) 1991
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_51_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: Mantoglou, A., L. W. Gelhar, Capillary tension head variance, mean soil moisture content, and effective specific soil moisture capacity of transient unsaturated flow in stratified soils, Water Resour. Res., 23, 47-56, 1987a.
– reference: Zhang, D., Nonstationary stochastic analysis of transient unsaturated flow in heterogeneous media, Water Resour. Res., 35, 1127-1141, 1999.
– reference: Eagleson, P. S., Climate, soil, and vegetation, 5, A derived distribution of storm surface runoff, Water Resour. Res., 14, 741-748, 1978e.
– reference: Russo, D., J. Zaidel, A. Laufer, Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil, Water Resour. Res., 34, 1451-1468, 1998.
– reference: Eagleson, P. S., Climate, soil, and vegetation, 4, The expected value of annual evaporation, Water Resour. Res., 14, 731-739, 1978d.
– reference: Foussereau, X., W. D. Graham, G. A. Akpoji, G. Destouni, andP. S. C. Rao, Stochastic analysis of transport in unsaturated heterogeneous soils under transient flow regimes,Water Resour. Res., 4.
– reference: Wolfram, S., Mathematica, A System for Doing Mathematics by Computer2, Addison-Wesley-Longman, Reading, Mass., 1991.
– reference: Polmann, D. J., D. McLaughlin, S. Luis, L. W. Gelhar, R. Abadou, Stochastic modeling of large-scale flow in heterogeneous unsaturated soils, Water Resour. Res., 27, 1447-1458, 1991.
– reference: Eagleson, P. S., Climate, soil, and vegetation, 3, A simplified model of soil moisture movement in the liquid phase, Water Resour. Res., 14, 722-730, 1978c.
– reference: Harter, T., T.-C. J. Yeh, Flow in unsaturated random porous media, nonlinear numerical analysis and comparison to analytical stochastic models, Adv. Water Resour., 22, 257-272, 1998.
– reference: Dagan, G., E. Bresler, Solute dispersion in unsaturated heterogenous soil at field scale, 1, Theory, Soil Sci. Soc. Am. J., 43, 461-466, 1979.
– reference: Russo, D., Stochastic analysis of simulated vadose zone solute transport in a vertical cross section of heterogeneous soil during non-steady water flow, Water Resour. Res., 27, 267-283, 1991.
– reference: Journel, A. G., C. J. Huijbrecht, Mining Geostatistics, Academic, San Diego, Calif., 1978.
– reference: Laliberte, G. E., A. T. Corey, R. H. Brooks, Properties of unsaturated porous media, Hydrol. Pap., 17, Colo. State Univ., Fort Collins, 1966.
– reference: Yeh, T. C., L. W. Gelhar, A. L. Gutjahr, Stochastic analysis of unsaturated flow in heterogeneous soils, 1, Statistically isotropic media, Water Resour. Res., 21, 447-456, 1985a.
– reference: Mantoglou, A., L. W. Gelhar, Effective hydraulic conductivities of transient unsaturated flow in stratified soils, Water Resour. Res., 23, 57-67, 1987b.
– reference: Russo, D., Stochastic modeling of macrodispersion for solute transport in a heterogeneous unsaturated porous formation, Water Resour. Res., 29, 383-397, 1993a.
– reference: Eagleson, P. S., Climate, soil, and vegetation, 1, Introduction to water balance dynamics, Water Resour. Res., 14, 705-712, 1978a.
– reference: Parlange, M. B., G. G. Katul, R. H. Cuenca, M. L. Kavvas, D. R. Nielsen, M. Mata, Physical basis for a time series model of soil water content, Water Resour. Res., 28, 2437-2446, 1992.
– reference: Kendall, M., A. Stuart, The Advanced Theory of Statistics, 3, MacMillan, New York, 1977.
– reference: Russo, D., J. Zaidel, A. Laufer, Stochastic analysis of solute transport in partially saturated heterogeneous soil, 2, Prediction of solute spreading and breakthrough, Water Resour. Res., 30, 781-790, 1994b.
– reference: Russo, D., J. Zaidel, A. Laufer, Stochastic analysis of solute transport in partially saturated heterogeneous soil, 1, Numerical experiments, Water Resour. Res., 30, 769-779, 1994a.
– reference: Brooks, R. H., A. T. Corey, Hydraulic properties of porous media, Hydrol. Pap., 3, Colo. State Univ., Fort Collins, 1964.
– reference: Eagleson, P. S., Climate, soil, and vegetation, 6, Dynamics of the annual water balance, Water Resour. Res., 14, 749-764, 1978f.
– reference: Harter, T., D. Zhang, Water flow and solute spreading in heterogeneous soils with spatially variable water content, Water Resour. Res., 35, 415-426, 1999.
– reference: Mood, A. M., F. A. Graybill, D. C. Boes, Introduction to the Theory of Statistics3, McGraw-Hill, New York, 1974.
– reference: Gelhar, L. W., Stochastic Subsurface Hydrology, Prentice-Hall, Englewood Cliffs, N. J., 1993.
– reference: Jury, W. A., J. Gruber, A stochastic analysis of the influence of soil and climatic variability on the estimate of pesticide groundwater pollution potential, Water Resour. Res., 25, 2465-2474, 1989.
– reference: Russo, D., Stochastic analysis of flow and transport in unsaturated heterogeneous porous formation: Effects of variability in water saturation, Water Resour. Res., 34, 569-581, 1998.
– reference: Destouni, G., Applicability of the steady state flow assumption for solute advection in field soils, Water Resour. Res., 27, 2129-2140, 1991.
– reference: Eagleson, P. S., Climate, soil, and vegetation, 2, The distribution of annual precipitation derived from observed storm sequences, Water Resour. Res., 14, 713-721, 1978b.
– reference: Jury, W. A., R. Roth, Transfer Function and Solute Movement Through Soil: Theory and Applications, Birkhauser, Basel, Switzerland, 1990.
– reference: Destouni, G., The effect of vertical soil heterogeneity on field scale solute flux, Water Resour. Res., 28, 1303-1309, 1992.
– reference: Jury, W. A., G. Sposito, R. White, A transfer function model of solute transport through soil, 1, Fundamental concepts, Soil Sci. Soc. Am. J., 22, 243-247, 1986.
– reference: Yeh, T. C., L. W. Gelhar, A. L. Gutjahr, Stochastic analysis of unsaturated flow in heterogeneous soils, 3, Observation and applications, Water Resour. Res., 21, 465-471, 1985c.
– reference: Yeh, T. C., L. W. Gelhar, A. L. Gutjahr, Stochastic analysis of unsaturated flow in heterogeneous soils, 2, Statistically anisotropic media with variable a, Water Resour. Res., 21, 457-464, 1985b.
– reference: Harter, T., T.-C. J. Yeh, Stochastic analysis of solute transport in heterogeneous, variably saturated soils, Water Resour. Res., 32, 1585-1595, 1996.
– reference: Zhang, D., T. C. Wallstrom, C. L. Winter, Stochastic analysis of steady state unsaturated flow in heterogeneous media: Comparison of the Brooks-Corey model and Gardner-Russo models, Water Resour. Res., 34, 1437-1449, 1998.
– reference: Katul, G., P. Todd, D. Pataki, Soil water depletion by oak trees and the influence of root water uptake on the moisture content spatial statistics, Water Resour. Res., 33, 611-623, 1997.
– reference: Russo, D., Stochastic modeling of solute flux in a heterogenous partially saturated porous formation, Water Resour. Res., 29, 1731-1744, 1993b.
– reference: Mantoglou, A., L. W. Gelhar, Stochastic modeling of large-scale transient unsaturated flow systems, Water Resour. Res., 23, 37-46, 1987c.
– reference: Jury, W. A., Simulation of solute transport using a transfer function model, Water Resour. Res., 18, 363-368, 1982.
– reference: Butters, G. L., W. A. Jury, F. F. Ernst, Field scale transport of bromide in an unsaturated soil, 1, Experimental methodology and results, Water Resour. Res., 25, 1575-1581, 1989.
– reference: Eagleson, P. S., Climate, soil, and vegetation, 7, A derived distribution of annual water yield, Water Resour. Res., 14, 765-776, 1978g.
– volume: 14
  start-page: 722
  year: 1978
  end-page: 730
  article-title: Climate, soil, and vegetation, 3, A simplified model of soil moisture movement in the liquid phase
  publication-title: Water Resour. Res.
– volume: 33
  start-page: 611
  year: 1997
  end-page: 623
  article-title: Soil water depletion by oak trees and the influence of root water uptake on the moisture content spatial statistics
  publication-title: Water Resour. Res.
– volume: 43
  start-page: 461
  year: 1979
  end-page: 466
  article-title: Solute dispersion in unsaturated heterogenous soil at field scale, 1, Theory
  publication-title: Soil Sci. Soc. Am. J.
– volume: 30
  start-page: 769
  year: 1994
  end-page: 779
  article-title: Stochastic analysis of solute transport in partially saturated heterogeneous soil, 1, Numerical experiments
  publication-title: Water Resour. Res.
– volume: 14
  start-page: 731
  year: 1978
  end-page: 739
  article-title: Climate, soil, and vegetation, 4, The expected value of annual evaporation
  publication-title: Water Resour. Res.
– volume: 21
  start-page: 465
  year: 1985
  end-page: 471
  article-title: Stochastic analysis of unsaturated flow in heterogeneous soils, 3, Observation and applications
  publication-title: Water Resour. Res.
– volume: 14
  start-page: 749
  year: 1978
  end-page: 764
  article-title: Climate, soil, and vegetation, 6, Dynamics of the annual water balance
  publication-title: Water Resour. Res.
– volume: 21
  start-page: 457
  year: 1985
  end-page: 464
  article-title: Stochastic analysis of unsaturated flow in heterogeneous soils, 2, Statistically anisotropic media with variable a
  publication-title: Water Resour. Res.
– volume: 35
  start-page: 1127
  year: 1999
  end-page: 1141
  article-title: Nonstationary stochastic analysis of transient unsaturated flow in heterogeneous media
  publication-title: Water Resour. Res.
– volume: 28
  start-page: 2437
  year: 1992
  end-page: 2446
  article-title: Physical basis for a time series model of soil water content
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 1731
  year: 1993
  end-page: 1744
  article-title: Stochastic modeling of solute flux in a heterogenous partially saturated porous formation
  publication-title: Water Resour. Res.
– volume: 34
  start-page: 1451
  year: 1998
  end-page: 1468
  article-title: Numerical analysis of flow and transport in a three‐dimensional partially saturated heterogeneous soil
  publication-title: Water Resour. Res.
– volume: 28
  start-page: 1303
  year: 1992
  end-page: 1309
  article-title: The effect of vertical soil heterogeneity on field scale solute flux
  publication-title: Water Resour. Res.
– volume: 27
  start-page: 267
  year: 1991
  end-page: 283
  article-title: Stochastic analysis of simulated vadose zone solute transport in a vertical cross section of heterogeneous soil during non‐steady water flow
  publication-title: Water Resour. Res.
– volume: 14
  start-page: 705
  year: 1978
  end-page: 712
  article-title: Climate, soil, and vegetation, 1, Introduction to water balance dynamics
  publication-title: Water Resour. Res.
– volume: 23
  start-page: 37
  year: 1987
  end-page: 46
  article-title: Stochastic modeling of large‐scale transient unsaturated flow systems
  publication-title: Water Resour. Res.
– volume: 21
  start-page: 447
  year: 1985
  end-page: 456
  article-title: Stochastic analysis of unsaturated flow in heterogeneous soils, 1, Statistically isotropic media
  publication-title: Water Resour. Res.
– volume: 23
  start-page: 47
  year: 1987
  end-page: 56
  article-title: Capillary tension head variance, mean soil moisture content, and effective specific soil moisture capacity of transient unsaturated flow in stratified soils
  publication-title: Water Resour. Res.
– volume: 35
  start-page: 415
  year: 1999
  end-page: 426
  article-title: Water flow and solute spreading in heterogeneous soils with spatially variable water content
  publication-title: Water Resour. Res.
– year: 1990
– volume: 14
  start-page: 713
  year: 1978
  end-page: 721
  article-title: Climate, soil, and vegetation, 2, The distribution of annual precipitation derived from observed storm sequences
  publication-title: Water Resour. Res.
– volume: 22
  start-page: 243
  year: 1986
  end-page: 247
  article-title: A transfer function model of solute transport through soil, 1, Fundamental concepts
  publication-title: Soil Sci. Soc. Am. J.
– volume: 29
  start-page: 383
  year: 1993
  end-page: 397
  article-title: Stochastic modeling of macrodispersion for solute transport in a heterogeneous unsaturated porous formation
  publication-title: Water Resour. Res.
– volume: 32
  start-page: 1585
  year: 1996
  end-page: 1595
  article-title: Stochastic analysis of solute transport in heterogeneous, variably saturated soils
  publication-title: Water Resour. Res.
– volume: 27
  start-page: 1447
  year: 1991
  end-page: 1458
  article-title: Stochastic modeling of large‐scale flow in heterogeneous unsaturated soils
  publication-title: Water Resour. Res.
– year: 1984
– volume: 34
  start-page: 1437
  year: 1998
  end-page: 1449
  article-title: Stochastic analysis of steady state unsaturated flow in heterogeneous media: Comparison of the Brooks‐Corey model and Gardner‐Russo models
  publication-title: Water Resour. Res.
– volume: 18
  start-page: 363
  year: 1982
  end-page: 368
  article-title: Simulation of solute transport using a transfer function model
  publication-title: Water Resour. Res.
– volume: 30
  start-page: 781
  year: 1994
  end-page: 790
  article-title: Stochastic analysis of solute transport in partially saturated heterogeneous soil, 2, Prediction of solute spreading and breakthrough
  publication-title: Water Resour. Res.
– issue: 4
  article-title: Stochastic analysis of transport in unsaturated heterogeneous soils under transient flow regimes
  publication-title: Water Resour. Res.
– volume: 17
  year: 1966
– start-page: 342
  year: 1997
  end-page: 407
– volume: 25
  start-page: 2465
  year: 1989
  end-page: 2474
  article-title: A stochastic analysis of the influence of soil and climatic variability on the estimate of pesticide groundwater pollution potential
  publication-title: Water Resour. Res.
– volume: 3
  year: 1977
– year: 1974
– volume: 34
  start-page: 569
  year: 1998
  end-page: 581
  article-title: Stochastic analysis of flow and transport in unsaturated heterogeneous porous formation: Effects of variability in water saturation
  publication-title: Water Resour. Res.
– year: 1995
– volume: 27
  start-page: 2129
  year: 1991
  end-page: 2140
  article-title: Applicability of the steady state flow assumption for solute advection in field soils
  publication-title: Water Resour. Res.
– volume: 3
  year: 1964
– volume: 14
  start-page: 765
  year: 1978
  end-page: 776
  article-title: Climate, soil, and vegetation, 7, A derived distribution of annual water yield
  publication-title: Water Resour. Res.
– volume: 22
  start-page: 257
  year: 1998
  end-page: 272
  article-title: Flow in unsaturated random porous media, nonlinear numerical analysis and comparison to analytical stochastic models
  publication-title: Adv. Water Resour.
– year: 1978
– year: 1991
– year: 1993
– volume: 25
  start-page: 1575
  year: 1989
  end-page: 1581
  article-title: Field scale transport of bromide in an unsaturated soil, 1, Experimental methodology and results
  publication-title: Water Resour. Res.
– volume: 14
  start-page: 741
  year: 1978
  end-page: 748
  article-title: Climate, soil, and vegetation, 5, A derived distribution of storm surface runoff
  publication-title: Water Resour. Res.
– volume: 23
  start-page: 57
  year: 1987
  end-page: 67
  article-title: Effective hydraulic conductivities of transient unsaturated flow in stratified soils
  publication-title: Water Resour. Res.
– year: 1999
– ident: e_1_2_1_24_1
  doi: 10.1029/WR025i012p02465
– volume-title: Stochastic Subsurface Hydrology
  year: 1993
  ident: e_1_2_1_17_1
– ident: e_1_2_1_21_1
– start-page: 342
  volume-title: Mathematical Analysis in Engineering: How to Use the Basic Tools
  year: 1997
  ident: e_1_2_1_34_1
– ident: e_1_2_1_18_1
  doi: 10.1029/96WR00502
– ident: e_1_2_1_12_1
  doi: 10.1029/WR014i005p00741
– ident: e_1_2_1_40_1
  doi: 10.1029/92WR01957
– ident: e_1_2_1_43_1
  doi: 10.1029/93WR02883
– ident: e_1_2_1_11_1
  doi: 10.1029/WR014i005p00731
– ident: e_1_2_1_23_1
  doi: 10.1029/WR018i002p00363
– ident: e_1_2_1_33_1
  doi: 10.1029/WR023i001p00037
– ident: e_1_2_1_51_1
  doi: 10.1029/1998WR900126
– ident: e_1_2_1_5_1
  doi: 10.2136/sssaj1979.03615995004300030008x
– ident: e_1_2_1_20_1
  doi: 10.1029/1998WR900027
– ident: e_1_2_1_9_1
  doi: 10.1029/WR014i005p00713
– ident: e_1_2_1_44_1
  doi: 10.1029/93WR02882
– ident: e_1_2_1_2_1
– volume-title: Mining Geostatistics
  year: 1978
  ident: e_1_2_1_22_1
– issue: 4
  ident: e_1_2_1_16_1
  article-title: Stochastic analysis of transport in unsaturated heterogeneous soils under transient flow regimes
  publication-title: Water Resour. Res.
– volume-title: Introduction to the Theory of Statistics
  year: 1974
  ident: e_1_2_1_35_1
– ident: e_1_2_1_4_1
  doi: 10.1029/WR025i007p01575
– ident: e_1_2_1_41_1
  doi: 10.1029/93WR00321
– volume-title: Transfer Function and Solute Movement Through Soil: Theory and Applications
  year: 1990
  ident: e_1_2_1_25_1
– ident: e_1_2_1_31_1
  doi: 10.1029/WR023i001p00047
– ident: e_1_2_1_46_1
– ident: e_1_2_1_38_1
– ident: e_1_2_1_10_1
  doi: 10.1029/WR014i005p00722
– ident: e_1_2_1_49_1
  doi: 10.1029/WR021i004p00457
– ident: e_1_2_1_29_1
– ident: e_1_2_1_6_1
  doi: 10.1029/91WR01115
– ident: e_1_2_1_14_1
  doi: 10.1029/WR014i005p00765
– ident: e_1_2_1_52_1
  doi: 10.1029/98WR00317
– ident: e_1_2_1_36_1
  doi: 10.1029/92WR01241
– ident: e_1_2_1_7_1
  doi: 10.1029/92WR00166
– ident: e_1_2_1_8_1
  doi: 10.1029/WR014i005p00705
– ident: e_1_2_1_19_1
  doi: 10.1016/S0309-1708(98)00010-4
– ident: e_1_2_1_15_1
– ident: e_1_2_1_32_1
  doi: 10.1029/WR023i001p00057
– ident: e_1_2_1_50_1
  doi: 10.1029/WR021i004p00465
– ident: e_1_2_1_13_1
  doi: 10.1029/WR014i005p00749
– volume: 22
  start-page: 243
  year: 1986
  ident: e_1_2_1_26_1
  article-title: A transfer function model of solute transport through soil, 1, Fundamental concepts
  publication-title: Soil Sci. Soc. Am. J.
– volume-title: Mathematica, A System for Doing Mathematics by Computer
  year: 1991
  ident: e_1_2_1_47_1
– ident: e_1_2_1_3_1
– ident: e_1_2_1_45_1
  doi: 10.1029/98WR00435
– ident: e_1_2_1_27_1
  doi: 10.1029/96WR03978
– ident: e_1_2_1_42_1
  doi: 10.1029/97WR03619
– ident: e_1_2_1_37_1
  doi: 10.1029/91WR00762
– ident: e_1_2_1_30_1
– ident: e_1_2_1_39_1
  doi: 10.1029/90WR02105
– ident: e_1_2_1_48_1
  doi: 10.1029/WR021i004p00447
– ident: e_1_2_1_28_1
SSID ssj0014567
Score 1.7628099
Snippet A stochastic unsaturated water flow model is developed for heterogeneous soils subject to a transient flow regime. Equations are developed for a fully...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 891
SubjectTerms mathematical models
soil water movement
Title Stochastic analysis of transient flow in unsaturated heterogeneous soils
URI https://api.istex.fr/ark:/67375/WNG-DFTSFTC9-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F1999WR900342
https://www.proquest.com/docview/17749488
https://www.proquest.com/docview/48973663
Volume 36
WOSCitedRecordID wos000086090000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6igl58i_VRc1AvsrjdzT5ylOqqIEVqtd5CuklosexKt_Xx751Jt6UeKoi3PUwgO8nMfMnMfCHkhKk4VG6snSDSzGHa9R3JI-0wzyifSVf69jLn-T5qNOKXF_5QXrhhL8yYH2J64YaWYf01GrjsFCXZAHJkYv98u8kthx244Bqzdtm-a0yTCIANokmCGYFOWfcOwy9mB_-ISEuo3M8fcHMWtNqok6z_d74bZK3Em_RyvEE2yYLOtsjKpB25gO_yGfTu1za5fRzmaVcidTOVJVsJzQ0dYkDDxklq-vkH7WV0lBXICApAVdEuVtTksBF1Pipokff6xQ55Sq5b9VunfGrBkUhI6KSuMnBwMp5vOrXImLjDNYeTHpyHwMgVwIww5IYxIzseIAyjglgpA1jFhClgGu3vksUsz_QeoTLwQz8MlEldyUAkVmHqRdpD-5YApyrkfKJukZY85PgcRl_YfLjHxaymKuR0Kv025t-YI3dmV24qJAevWLMWBaLduBFXSesxadW5aFXI8WRpBVgSpkek1Y-oARLm4M_mS7CYR6AIH37BrvSvMxLtZr0ZA97b_5P0AVkdd_tjcdAhWRwORvqILKfvw14xqJKlq2bydF-1G_0bKK_6_Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa6ZEB3WbtHsazrqkO7y2DMteWHjkNaL8PSoEjdpTdBsSQkWGAPcbLHvy_pKEF6aIFhNx9oQ6ZI6ZNIfgQ44TqNtZ8aL0oM97jxQ0-JxHg8sDrkyldhc5nzvZ8MBuntrbhyfU6pFmbFD7G5cCPPaNZrcnC6kHZsA0SSSQX0o6FoSOyeQJujJUUtaJ8Ps5v-JpCA-CBZB5kJ7Ljcd_zCp-337-1KbVLwn3uQcxu4NjtPtvffY96H5w50ss8rK3kBO6Z8CbvrmuQan10v9MnfV9C7XlTFRBF_M1OOsoRVli1oV6PqSWZn1W82LdmyrIkWFNGqZhNKq6nQGk21rFldTWf1a7jJLvJuz3P9FjxFrIRe4WuLpycbhHZ8llibjoUReNzDQxF6ukasEcfCcm7VOECYYXWUam0RsNi4QGBjwgNolVVp3gBTURiHcaRt4SuOIqmOiyAxATm5QkzVgY9rfcvCkZFTT4yZbILigZDbmurA6Ub654qE4wG5D83UbYTU_AclriWRHA2-yPMsv87yrpB5B47XcyvRnShGohr9yDOEwwIXtYcleCoSVESIv9BM9aMjkqNhd5gi6Hv7T9LHsNvLL_uy_3Xw7RCercr_KVvoHbQW86U5gqfFr8W0nr939n4HCqD-qQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbWZlh32aPr0OxVHbZeBqOOLT90HJJ5HRYERR5LboJiSUiwwC7iZI9_P9JRguTQAUNvPtCGTIrSJ5H8CPCe6zTWfmq8KDHc48YPPSUS4_HA6pArX4X1Zc73btLrpZOJuHF9TqkWZsMPsbtwI8-o12tycHOrrWMbIJJMKqAf90VNYncEDR6JGD2z0elno-4ukID4INkGmQnsuNx3_MLV_vsHu1KDFPz7AHLuA9d658me3nvMz-CJA53s02aWPIcHpjiFk21NcoXPrhf67M8LuB6synymiL-ZKUdZwkrLVrSrUfUks4vyF5sXbF1URAuKaFWzGaXVlDgbTbmuWFXOF9UZjLLPw_a15_oteIpYCb3c1xZPTzYI7bSVWJtOhRF43MNDEXq6RqwRx8JybtU0QJhhdZRqbRGw2DhHYGPCl3BclIU5B6aiMA7jSNvcVxxFUh3nQWICcnKFmKoJH7f6lrkjI6eeGAtZB8UDIfc11YQPO-nbDQnHHXKXtel2Qmr5gxLXkkiOe19kJxsOsmFbyGETLra2lehOFCNRtX5kC-GwwEXtbgmeigQVEeIv1Kb-54jkuN_upwj6Xv2X9AU8uulksvu19-01PN5U_1Oy0Bs4Xi3X5i08zH-u5tXynZvufwGV3P4k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+analysis+of+transient+flow+in+unsaturated+heterogeneous+soils&rft.jtitle=Water+resources+research&rft.au=Foussereau%2C+X.&rft.au=Graham%2C+W.+D.&rft.au=Rao%2C+P.+S.+C.&rft.date=2000-04-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=36&rft.issue=4&rft.spage=891&rft.epage=910&rft_id=info:doi/10.1029%2F1999WR900342&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_1999WR900342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon