Simulation and Reconstruction of Metabolite-Metabolite Association Networks Using a Metabolic Dynamic Model and Correlation Based Algorithms
Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3,...
Uloženo v:
| Vydáno v: | Journal of proteome research Ročník 18; číslo 3; s. 1099 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.03.2019
|
| Témata: | |
| ISSN: | 1535-3907, 1535-3907 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS, and modifications of the MRNET algorithm, together with standard Pearson's and Spearman's correlation) using as a test case data generated using a dynamic metabolic model describing the metabolism of arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite association networks was assessed against the original metabolic network taking into account different degrees of association among the metabolites and different sample sizes and noise levels. We found that inference algorithms based on resampling and bootstrapping perform better when correlations are used as indexes to measure the strength of metabolite-metabolite associations. We also advocate for the use of data generated using dynamic models to test the performance of algorithms for network inference since they produce correlation patterns that are more similar to those observed in real metabolomics data. |
|---|---|
| AbstractList | Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS, and modifications of the MRNET algorithm, together with standard Pearson's and Spearman's correlation) using as a test case data generated using a dynamic metabolic model describing the metabolism of arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite association networks was assessed against the original metabolic network taking into account different degrees of association among the metabolites and different sample sizes and noise levels. We found that inference algorithms based on resampling and bootstrapping perform better when correlations are used as indexes to measure the strength of metabolite-metabolite associations. We also advocate for the use of data generated using dynamic models to test the performance of algorithms for network inference since they produce correlation patterns that are more similar to those observed in real metabolomics data.Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS, and modifications of the MRNET algorithm, together with standard Pearson's and Spearman's correlation) using as a test case data generated using a dynamic metabolic model describing the metabolism of arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite association networks was assessed against the original metabolic network taking into account different degrees of association among the metabolites and different sample sizes and noise levels. We found that inference algorithms based on resampling and bootstrapping perform better when correlations are used as indexes to measure the strength of metabolite-metabolite associations. We also advocate for the use of data generated using dynamic models to test the performance of algorithms for network inference since they produce correlation patterns that are more similar to those observed in real metabolomics data. Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS, and modifications of the MRNET algorithm, together with standard Pearson's and Spearman's correlation) using as a test case data generated using a dynamic metabolic model describing the metabolism of arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite association networks was assessed against the original metabolic network taking into account different degrees of association among the metabolites and different sample sizes and noise levels. We found that inference algorithms based on resampling and bootstrapping perform better when correlations are used as indexes to measure the strength of metabolite-metabolite associations. We also advocate for the use of data generated using dynamic models to test the performance of algorithms for network inference since they produce correlation patterns that are more similar to those observed in real metabolomics data. |
| Author | Suarez-Diez, Maria Jahagirdar, Sanjeevan Saccenti, Edoardo |
| Author_xml | – sequence: 1 givenname: Sanjeevan surname: Jahagirdar fullname: Jahagirdar, Sanjeevan organization: Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands – sequence: 2 givenname: Maria orcidid: 0000-0001-5845-146X surname: Suarez-Diez fullname: Suarez-Diez, Maria organization: Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands – sequence: 3 givenname: Edoardo orcidid: 0000-0001-8284-4829 surname: Saccenti fullname: Saccenti, Edoardo organization: Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30663881$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUMlOwzAUtFARpYVPAOXIJcVLnMbHUlapBQnoOXLsl5KS2MV2hPoPfDRRW5bD04xGM2-kGaCesQYQOiN4RDAll1L50WrtbADbwCgrMB5n5AAdE854zAQe9_7xPhp4v8KY8DFmR6jPcJqyLCPH6OulatpahsqaSBodPYOyxgfXqq1ky2gOQRa2rgLEfzSaeG9Vtcs9Qvi07t1HC1-ZZSR_Iyq63hjZdDi3GuptwdQ6B_vCK-lBR5N6aV0V3hp_gg5LWXs43eMQLW5vXqf38ezp7mE6mcUyYTzEqSoACkyYoqRMeMm7kxknshSYlkC10IAF5ZAKmTKqmUi0EioFJRNdJhkdoovd326_jxZ8yJvKK6hracC2PqdkLFgmkox31vO9tS0a0PnaVY10m_xnQfoNoih7jQ |
| CitedBy_id | crossref_primary_10_3390_metabo14040230 crossref_primary_10_3390_metabo10060243 crossref_primary_10_3390_metabo13020296 crossref_primary_10_1016_j_trac_2023_117380 crossref_primary_10_3390_genes15060685 crossref_primary_10_1016_j_bbrc_2021_03_069 crossref_primary_10_1016_j_clim_2023_109276 crossref_primary_10_1172_JCI149523 crossref_primary_10_3390_metabo11050326 crossref_primary_10_3390_metabo10040171 crossref_primary_10_3390_metabo14020093 crossref_primary_10_3390_plants10112506 crossref_primary_10_1038_s41598_022_07586_6 crossref_primary_10_1002_tpg2_20098 crossref_primary_10_1080_14789450_2020_1766975 crossref_primary_10_1186_s12916_022_02355_8 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.jproteome.8b00781 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1535-3907 |
| ExternalDocumentID | 30663881 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 4.4 53G 55A 5GY 5VS 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CGR CS3 CUPRZ CUY CVF DU5 EBS ECM ED~ EIF EJD F5P GGK GNL IH9 IHE JG~ NPM P2P RNS ROL UI2 VF5 VG9 W1F 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a435t-6cbeeb013c21f45f545fa851af902fe2d9de0925e69a632d394dc9c6eca4df482 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460491800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1535-3907 |
| IngestDate | Fri Jul 11 11:11:17 EDT 2025 Thu Jan 02 22:58:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | arachidonic acid network inference arachidonic acid metabolism top-down approach metabolic modeling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a435t-6cbeeb013c21f45f545fa851af902fe2d9de0925e69a632d394dc9c6eca4df482 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8284-4829 0000-0001-5845-146X |
| PMID | 30663881 |
| PQID | 2179389485 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2179389485 pubmed_primary_30663881 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of proteome research |
| PublicationTitleAlternate | J Proteome Res |
| PublicationYear | 2019 |
| SSID | ssj0015703 |
| Score | 2.3854225 |
| Snippet | Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1099 |
| SubjectTerms | Algorithms Computer Simulation Humans Metabolic Networks and Pathways - genetics Metabolome - genetics Metabolomics - statistics & numerical data Models, Biological Sample Size |
| Title | Simulation and Reconstruction of Metabolite-Metabolite Association Networks Using a Metabolic Dynamic Model and Correlation Based Algorithms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30663881 https://www.proquest.com/docview/2179389485 |
| Volume | 18 |
| WOSCitedRecordID | wos000460491800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAIsGFfSmbjMTVbbM6PqFSqDjQqBIg9RY5XqCoTQoJfAUfzTgL4YKERA5WLpYte-x59ozfQ-hCSFhAnhJE-q4kruCMxICUiXZi35MulY4qSFzvaBgGkwkbVxduWZVWWe-JxUYtU2HuyLu2saTAcJlcLl6JUY0y0dVKQmMZtRyAMiali06aKIJhlyr5Uj0CZ3tav-CxrS4XWeeloEJI56oTxMZVWr-jzMLbDDf_288ttFHhTNwvDWMbLalkB60Nanm3XfR5P51X0l2YJxKbc2jDJotTjUcqBwsxb5RJ84t_zCcOyxzyDBeJB5h_VxH4ulS6x0ZrbVY0MDA6IFWDV-A7Je7PnqDn-fM820OPw5uHwS2ppBkIB3yVE1_ESpkrVGFb2vU04DDNAbxxzXq2VrZkUvWY7Smfcd-xpcNcKZjwleCu1G5g76OVJE3UIcLCB_cIKFTBSdU1BIaUWoDxRI8KSeFro_N6oCMYIhPP4IlK37OoGeo2OihnK1qUHB2RY6BUEFhHf6h9jNYBBrEys-wEtTQsfHWKVsVHPs3ezgqbgjIcj74AwqXalQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+and+Reconstruction+of+Metabolite-Metabolite+Association+Networks+Using+a+Metabolic+Dynamic+Model+and+Correlation+Based+Algorithms&rft.jtitle=Journal+of+proteome+research&rft.au=Jahagirdar%2C+Sanjeevan&rft.au=Suarez-Diez%2C+Maria&rft.au=Saccenti%2C+Edoardo&rft.date=2019-03-01&rft.issn=1535-3907&rft.eissn=1535-3907&rft.volume=18&rft.issue=3&rft.spage=1099&rft_id=info:doi/10.1021%2Facs.jproteome.8b00781&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3907&client=summon |