Simulation and Reconstruction of Metabolite-Metabolite Association Networks Using a Metabolic Dynamic Model and Correlation Based Algorithms

Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of proteome research Ročník 18; číslo 3; s. 1099
Hlavní autoři: Jahagirdar, Sanjeevan, Suarez-Diez, Maria, Saccenti, Edoardo
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.03.2019
Témata:
ISSN:1535-3907, 1535-3907
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS, and modifications of the MRNET algorithm, together with standard Pearson's and Spearman's correlation) using as a test case data generated using a dynamic metabolic model describing the metabolism of arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite association networks was assessed against the original metabolic network taking into account different degrees of association among the metabolites and different sample sizes and noise levels. We found that inference algorithms based on resampling and bootstrapping perform better when correlations are used as indexes to measure the strength of metabolite-metabolite associations. We also advocate for the use of data generated using dynamic models to test the performance of algorithms for network inference since they produce correlation patterns that are more similar to those observed in real metabolomics data.
AbstractList Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS, and modifications of the MRNET algorithm, together with standard Pearson's and Spearman's correlation) using as a test case data generated using a dynamic metabolic model describing the metabolism of arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite association networks was assessed against the original metabolic network taking into account different degrees of association among the metabolites and different sample sizes and noise levels. We found that inference algorithms based on resampling and bootstrapping perform better when correlations are used as indexes to measure the strength of metabolite-metabolite associations. We also advocate for the use of data generated using dynamic models to test the performance of algorithms for network inference since they produce correlation patterns that are more similar to those observed in real metabolomics data.Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS, and modifications of the MRNET algorithm, together with standard Pearson's and Spearman's correlation) using as a test case data generated using a dynamic metabolic model describing the metabolism of arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite association networks was assessed against the original metabolic network taking into account different degrees of association among the metabolites and different sample sizes and noise levels. We found that inference algorithms based on resampling and bootstrapping perform better when correlations are used as indexes to measure the strength of metabolite-metabolite associations. We also advocate for the use of data generated using dynamic models to test the performance of algorithms for network inference since they produce correlation patterns that are more similar to those observed in real metabolomics data.
Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS, and modifications of the MRNET algorithm, together with standard Pearson's and Spearman's correlation) using as a test case data generated using a dynamic metabolic model describing the metabolism of arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite association networks was assessed against the original metabolic network taking into account different degrees of association among the metabolites and different sample sizes and noise levels. We found that inference algorithms based on resampling and bootstrapping perform better when correlations are used as indexes to measure the strength of metabolite-metabolite associations. We also advocate for the use of data generated using dynamic models to test the performance of algorithms for network inference since they produce correlation patterns that are more similar to those observed in real metabolomics data.
Author Suarez-Diez, Maria
Jahagirdar, Sanjeevan
Saccenti, Edoardo
Author_xml – sequence: 1
  givenname: Sanjeevan
  surname: Jahagirdar
  fullname: Jahagirdar, Sanjeevan
  organization: Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands
– sequence: 2
  givenname: Maria
  orcidid: 0000-0001-5845-146X
  surname: Suarez-Diez
  fullname: Suarez-Diez, Maria
  organization: Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands
– sequence: 3
  givenname: Edoardo
  orcidid: 0000-0001-8284-4829
  surname: Saccenti
  fullname: Saccenti, Edoardo
  organization: Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30663881$$D View this record in MEDLINE/PubMed
BookMark eNpNUMlOwzAUtFARpYVPAOXIJcVLnMbHUlapBQnoOXLsl5KS2MV2hPoPfDRRW5bD04xGM2-kGaCesQYQOiN4RDAll1L50WrtbADbwCgrMB5n5AAdE854zAQe9_7xPhp4v8KY8DFmR6jPcJqyLCPH6OulatpahsqaSBodPYOyxgfXqq1ky2gOQRa2rgLEfzSaeG9Vtcs9Qvi07t1HC1-ZZSR_Iyq63hjZdDi3GuptwdQ6B_vCK-lBR5N6aV0V3hp_gg5LWXs43eMQLW5vXqf38ezp7mE6mcUyYTzEqSoACkyYoqRMeMm7kxknshSYlkC10IAF5ZAKmTKqmUi0EioFJRNdJhkdoovd326_jxZ8yJvKK6hracC2PqdkLFgmkox31vO9tS0a0PnaVY10m_xnQfoNoih7jQ
CitedBy_id crossref_primary_10_3390_metabo14040230
crossref_primary_10_3390_metabo10060243
crossref_primary_10_3390_metabo13020296
crossref_primary_10_1016_j_trac_2023_117380
crossref_primary_10_3390_genes15060685
crossref_primary_10_1016_j_bbrc_2021_03_069
crossref_primary_10_1016_j_clim_2023_109276
crossref_primary_10_1172_JCI149523
crossref_primary_10_3390_metabo11050326
crossref_primary_10_3390_metabo10040171
crossref_primary_10_3390_metabo14020093
crossref_primary_10_3390_plants10112506
crossref_primary_10_1038_s41598_022_07586_6
crossref_primary_10_1002_tpg2_20098
crossref_primary_10_1080_14789450_2020_1766975
crossref_primary_10_1186_s12916_022_02355_8
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.jproteome.8b00781
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1535-3907
ExternalDocumentID 30663881
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
4.4
53G
55A
5GY
5VS
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
DU5
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH9
IHE
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a435t-6cbeeb013c21f45f545fa851af902fe2d9de0925e69a632d394dc9c6eca4df482
IEDL.DBID 7X8
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460491800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1535-3907
IngestDate Fri Jul 11 11:11:17 EDT 2025
Thu Jan 02 22:58:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords arachidonic acid
network inference
arachidonic acid metabolism
top-down approach
metabolic modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a435t-6cbeeb013c21f45f545fa851af902fe2d9de0925e69a632d394dc9c6eca4df482
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8284-4829
0000-0001-5845-146X
PMID 30663881
PQID 2179389485
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2179389485
pubmed_primary_30663881
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of proteome research
PublicationTitleAlternate J Proteome Res
PublicationYear 2019
SSID ssj0015703
Score 2.3854225
Snippet Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1099
SubjectTerms Algorithms
Computer Simulation
Humans
Metabolic Networks and Pathways - genetics
Metabolome - genetics
Metabolomics - statistics & numerical data
Models, Biological
Sample Size
Title Simulation and Reconstruction of Metabolite-Metabolite Association Networks Using a Metabolic Dynamic Model and Correlation Based Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/30663881
https://www.proquest.com/docview/2179389485
Volume 18
WOSCitedRecordID wos000460491800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAIsGFfSmbjMTVLXHSOD6hUqg40KgSi3qLXC9Q1CaFBL6Cj2achXBBQuIS5WLZsmc8b-zxewidBcr3tKcF-DdnxKPGEA6WQYRPwS3p2FU5A9_jLQvDYDTiw_LALS3LKqs9Md-oVSLtGXmbWksKLJfJxfyVWNUoe7taSmgsooYLUMaWdLFRfYtg2aUKvtQOgdyeVS94qNMWMm295FQIyUy3grENlc7vKDOPNv31_45zA62VOBN3C8PYRAs63kIrvUrebRt93k1mpXQXFrHCNg-t2WRxYvBAZ2Ah9o0yqX_xj_XEYVFDnuK88ACL7yYSXxVK99hqrU3zDnpWB6Ts8BJip8Ld6ROMPHuepTvooX9937shpTQDEYCvMuLLsdb2CFVSx3gdAzjMCABvwvBzajRVXOlzWHTtc-G7VLncU5JLX0vhKeMFdBctxUms9xE2HhOQEkOUzNWvNReMS-UyppjmkqsmOq0mOoIpsvcZItbJexrVU91Ee8VqRfOCoyNyLZQKAufgD60P0SrAIF5Ulh2hhgHH18doWX5kk_TtJLcp-IbDwRfkitqj
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+and+Reconstruction+of+Metabolite-Metabolite+Association+Networks+Using+a+Metabolic+Dynamic+Model+and+Correlation+Based+Algorithms&rft.jtitle=Journal+of+proteome+research&rft.au=Jahagirdar%2C+Sanjeevan&rft.au=Suarez-Diez%2C+Maria&rft.au=Saccenti%2C+Edoardo&rft.date=2019-03-01&rft.eissn=1535-3907&rft.volume=18&rft.issue=3&rft.spage=1099&rft_id=info:doi/10.1021%2Facs.jproteome.8b00781&rft_id=info%3Apmid%2F30663881&rft_id=info%3Apmid%2F30663881&rft.externalDocID=30663881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3907&client=summon