Composition operators on Hardy-Orlicz spaces

The authors investigate composition operators on Hardy-Orlicz spaces when the Orlicz function \Psi grows rapidly: compactness, weak compactness, to be p-summing, order bounded, \ldots, and show how these notions behave according to the growth of \Psi. They introduce an adapted version of Carleson me...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Lefèvre, Pascal, Li, Daniel, Queffélec, Hervé, Rodríguez-Piazza, Luis
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2010
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:082184637X, 9780821846377
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The authors investigate composition operators on Hardy-Orlicz spaces when the Orlicz function \Psi grows rapidly: compactness, weak compactness, to be p-summing, order bounded, \ldots, and show how these notions behave according to the growth of \Psi. They introduce an adapted version of Carleson measure. They construct various examples showing that their results are essentially sharp. In the last part, they study the case of Bergman-Orlicz spaces.
Bibliografie:Other authors: Daniel Li, Hervé Queffélec, Luis Rodríquez-Piazza
Includes bibliographical references (p. 73-74)
Volume 207, number 974 (fourth of 5 numbers).
ISBN:082184637X
9780821846377
ISSN:0065-9266
1947-6221
DOI:10.1090/S0065-9266-10-00580-6