Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives

A consistent framework for parameter estimation in distributed hydrological catchment modelling using automatic calibration is formulated. The framework focuses on the different steps in the estimation process from model parameterisation and selection of calibration parameters, formulation of calibr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources Jg. 26; H. 2; S. 205 - 216
1. Verfasser: Madsen, Henrik
Format: Journal Article Tagungsbericht
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.02.2003
Elsevier Science
Schlagworte:
ISSN:0309-1708, 1872-9657
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A consistent framework for parameter estimation in distributed hydrological catchment modelling using automatic calibration is formulated. The framework focuses on the different steps in the estimation process from model parameterisation and selection of calibration parameters, formulation of calibration criteria, and choice of optimisation algorithm. The calibration problem is formulated in a general multi-objective context in which different objective functions that measure individual process descriptions can be optimised simultaneously. Within this framework it is possible to tailor the model calibration to the specific objectives of the model application being considered. A test example is presented that illustrates the use of the calibration framework for parameter estimation in the MIKE SHE integrated and distributed hydrological modelling system. A significant trade-off between the performance of the groundwater level simulations and the catchment runoff is observed in this case, defining a Pareto front with a very sharp structure. The Pareto optimum solution corresponding to a proposed balanced aggregated objective function is seen to provide a proper balance between the two objectives. Compared to a manual expert calibration, the balanced Pareto optimum solution provides generally better simulation of the runoff, whereas virtually similar performance is obtained for the groundwater level simulations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0309-1708
1872-9657
DOI:10.1016/S0309-1708(02)00092-1