Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections

Eicosanoids are lipid-based signaling molecules that play a unique role in innate immune responses. The multiple types of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), allow the innate immune cells to respond rapidly to bacterial invaders. Bacterial pathogens alter cyclooxygenase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection and immunity Jg. 89; H. 8; S. e0009521
Hauptverfasser: Sheppe, Austin E F, Edelmann, Mariola J
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 15.07.2021
Schlagworte:
ISSN:1098-5522, 1098-5522
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eicosanoids are lipid-based signaling molecules that play a unique role in innate immune responses. The multiple types of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), allow the innate immune cells to respond rapidly to bacterial invaders. Bacterial pathogens alter cyclooxygenase (COX)-derived prostaglandins (PGs) in macrophages, such as PGE2 15d-PGJ , and lipoxygenase (LOX)-derived leukotriene LTB which has chemotactic functions. The PG synthesis and secretion are regulated by substrate availability of arachidonic acid and by the COX-2 enzyme, and the expression of this protein is regulated at multiple levels, both transcriptionally and posttranscriptionally. Bacterial pathogens use virulence strategies such as type three secretion systems (T3SSs) to deliver virulence factors altering the expression of eicosanoid-specific biosynthetic enzymes, thereby modulating the host response to bacterial lipopolysaccharides (LPS). Recent advances have identified a novel role of eicosanoids in inflammasome activation during intracellular infection with bacterial pathogens. Specifically, PGE was found to enhance inflammasome activation, driving the formation of pore-induced intracellular traps (PITs), thus trapping bacteria from escaping the dying cell. Finally, eicosanoids and IL-1β released from macrophages are implicated in the efferocytosis of neighboring neutrophils. Neutrophils play an essential role in phagocytosing and degrading PITs and associated bacteria to restore homeostasis. This review focuses on the novel functions of host-derived eicosanoids in the host-pathogen interactions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1098-5522
1098-5522
DOI:10.1128/IAI.00095-21