Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet–dry and freeze–thaw cycling
Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet–dry (WD) and freeze–thaw (...
Saved in:
| Published in: | Environmental pollution (1987) Vol. 268; no. Pt A; p. 115846 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
01.01.2021
|
| Subjects: | |
| ISSN: | 0269-7491, 1873-6424, 1873-6424 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet–dry (WD) and freeze–thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted.
[Display omitted]
•Aging of biochars was simulated with wet–dry (WD) and freeze–thaw (FT) cycling.•Biochar reduced phytoavailable Cd and Ni in alkaline soil under WD and/or FT aging.•Biochar promoted the distribution of Cd into the residual fraction of alkaline soil.•Effect of biochar on enzyme activities varied with enzyme type and aging conditions.•Crop straw biochars hold promise for long-term immobilization of Cd in alkaline soils.
Crop straw biochars stabilized Cd in a historically contaminated alkaline agricultural soil under accelerated aging, and thus hold promise for long-term immobilization of Cd under field conditions. |
|---|---|
| AbstractList | Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet-dry (WD) and freeze-thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted. Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet-dry (WD) and freeze-thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted.Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet-dry (WD) and freeze-thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted. Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet–dry (WD) and freeze–thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted. [Display omitted] •Aging of biochars was simulated with wet–dry (WD) and freeze–thaw (FT) cycling.•Biochar reduced phytoavailable Cd and Ni in alkaline soil under WD and/or FT aging.•Biochar promoted the distribution of Cd into the residual fraction of alkaline soil.•Effect of biochar on enzyme activities varied with enzyme type and aging conditions.•Crop straw biochars hold promise for long-term immobilization of Cd in alkaline soils. Crop straw biochars stabilized Cd in a historically contaminated alkaline agricultural soil under accelerated aging, and thus hold promise for long-term immobilization of Cd under field conditions. |
| ArticleNumber | 115846 |
| Author | Wang, Xilong Cheng, Hefa Yang, Kai Tao, Shu |
| Author_xml | – sequence: 1 givenname: Kai orcidid: 0000-0002-9712-6333 surname: Yang fullname: Yang, Kai – sequence: 2 givenname: Xilong surname: Wang fullname: Wang, Xilong – sequence: 3 givenname: Hefa orcidid: 0000-0003-4911-6971 surname: Cheng fullname: Cheng, Hefa email: hefac@umich.edu – sequence: 4 givenname: Shu surname: Tao fullname: Tao, Shu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33143976$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks9uEzEQxleoiKaFN0DIRy4J67V3vcsBCUXlj1TBBc6W1ztOJnjtYHsTpae-A6_D0_AkuEl74UAvtjzz-76RPN9Fcea8g6J4ScsFLWnzZrMAt9t6u6jKKpdo3fLmSTGjrWDzhlf8rJiVVdPNBe_oeXER46YsS84Ye1acM0Y560QzK35fGQM6EW-IWqFbEe9ITKpHizcqYX7lznIgyg3kC5L-QHr0eq1CPJbA3RxGIEon3GFCiAQdUWSNMfmAWll7INq7pEZ0KkH2sT-URZclq9yfbJqCsiR6zAeOkz1Ce0xrsof05_bXEA7HQSYA3EAupLXaE33Q2WT1vHhqlI3w4v6-LL5_uPq2_DS__vrx8_L99Vxx2qZ5wxqAUrDGgFGm63kNXA9Gm6HnulVV17FadzUXJRhaM2o0KFZ3ZScE7TVX7LJ4ffLdBv9zgpjkiFGDtcqBn6Ks6pp2ZS1E_TjKa9G0rRAso6_u0akfYZDbgKMKB_mwnAy8PQE6-BgDGKkxHZeSgkIraSnvkiA38pQEeZcEeUpCFvN_xA_-j8jenWSQ_3OHEGTUCE7DgCHnRA4e_2_wFwQX1a8 |
| CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_119775 crossref_primary_10_1016_j_coldregions_2023_103826 crossref_primary_10_1016_j_jes_2025_07_059 crossref_primary_10_1007_s11270_025_08288_1 crossref_primary_10_1038_s41598_024_72771_8 crossref_primary_10_3390_ma15113801 crossref_primary_10_1038_s41598_022_15494_y crossref_primary_10_1007_s11356_023_25342_9 crossref_primary_10_1016_j_envpol_2025_126255 crossref_primary_10_1016_j_envpol_2023_121219 crossref_primary_10_1016_j_eti_2025_104256 crossref_primary_10_1016_j_jhazmat_2024_134249 crossref_primary_10_1016_j_stress_2025_100836 crossref_primary_10_1007_s10653_025_02376_1 crossref_primary_10_1016_j_jhazmat_2021_128072 crossref_primary_10_3390_land12081580 crossref_primary_10_1016_j_jhazmat_2024_135356 crossref_primary_10_1016_j_envpol_2023_121414 crossref_primary_10_1016_j_colsurfa_2025_136720 crossref_primary_10_1016_j_jhazmat_2024_134345 crossref_primary_10_1038_s41598_025_96688_y crossref_primary_10_1186_s40538_023_00422_7 crossref_primary_10_1016_j_agwat_2024_109212 crossref_primary_10_1016_j_envpol_2022_119064 crossref_primary_10_1007_s11356_022_19867_8 crossref_primary_10_1111_sum_12804 crossref_primary_10_1007_s42768_022_00114_2 crossref_primary_10_1016_j_catena_2025_108765 crossref_primary_10_1016_j_ecoenv_2021_112173 crossref_primary_10_1016_j_jece_2022_108636 crossref_primary_10_1007_s13762_024_05646_0 crossref_primary_10_1016_j_jhazmat_2021_126666 crossref_primary_10_1016_j_jhazmat_2021_127876 crossref_primary_10_3390_su14010445 crossref_primary_10_1016_j_envpol_2025_125798 crossref_primary_10_1016_j_jhazmat_2021_125650 crossref_primary_10_1016_j_chemosphere_2021_133427 crossref_primary_10_1016_j_envpol_2023_121135 crossref_primary_10_1016_j_envpol_2022_120143 crossref_primary_10_1080_26395940_2022_2088622 crossref_primary_10_1016_j_scitotenv_2025_178693 crossref_primary_10_1016_j_envpol_2021_118243 crossref_primary_10_3390_agronomy15061276 crossref_primary_10_1016_j_chemosphere_2023_141029 crossref_primary_10_1016_j_ecoenv_2025_118124 crossref_primary_10_1016_j_scitotenv_2022_157734 crossref_primary_10_1016_j_chemosphere_2022_137453 crossref_primary_10_1016_j_scitotenv_2022_152922 |
| Cites_doi | 10.1016/j.soilbio.2015.11.006 10.1080/00103620009370514 10.1007/s11368-013-0806-z 10.1016/j.chemosphere.2017.01.130 10.1016/j.envint.2018.11.045 10.1016/j.chemosphere.2015.06.044 10.1016/j.envpol.2020.114687 10.1002/ldr.2262 10.1021/es103752u 10.1016/j.envpol.2016.04.028 10.1007/s42773-019-00030-5 10.1021/acs.est.9b04990 10.1021/es401458s 10.1016/j.envpol.2020.114773 10.1021/es202970x 10.1016/j.envpol.2019.113592 10.2136/sssaj2015.11.0414 10.1016/j.scitotenv.2019.134751 10.1039/b001496f 10.1007/s13593-016-0372-z 10.1007/s11356-017-8847-2 10.1016/j.envpol.2020.114553 10.1016/j.envpol.2019.113114 10.1016/j.chemosphere.2017.03.072 10.1016/j.biortech.2010.11.018 10.1021/acs.est.7b00647 10.1016/j.envpol.2020.114133 10.1007/s00374-013-0857-8 10.1016/j.envint.2019.02.022 10.1016/j.scitotenv.2017.08.228 10.15376/biores.14.2.4329-4343 10.1016/j.apsoil.2014.10.001 10.1016/j.envpol.2016.07.031 10.1007/s11356-018-3945-3 10.1021/es104401h 10.1016/j.envpol.2017.04.032 10.1016/S0038-0717(02)00076-7 10.1016/j.apsoil.2019.08.002 10.1007/s11356-017-8548-x 10.1016/j.envpol.2019.05.151 10.1016/j.envpol.2018.08.012 10.1016/j.envpol.2018.07.078 10.1007/s00374-011-0644-3 10.1016/j.scitotenv.2019.134223 10.1016/j.jes.2018.11.007 10.1016/j.envint.2016.04.042 10.1111/gcbb.12248 10.1016/j.envpol.2020.114449 10.1016/j.ecoleng.2016.05.007 10.1007/s11356-015-4233-0 10.1021/acs.est.8b00672 10.1016/j.geoderma.2019.06.006 10.1016/j.scitotenv.2017.11.132 10.1007/s11356-017-0652-4 10.1016/j.scitotenv.2018.03.161 10.1016/j.scitotenv.2017.11.038 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.envpol.2020.115846 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Environmental Sciences |
| EISSN | 1873-6424 |
| ExternalDocumentID | 33143976 10_1016_j_envpol_2020_115846 S0269749120365350 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- SEN SEW VH1 WUQ XOL ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-a418t-636ee0736fefaf9b45e4cdfcfdb4c8a29935c95470ef1531fcea35909771bc4a3 |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600553000033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-7491 1873-6424 |
| IngestDate | Thu Oct 02 10:35:59 EDT 2025 Sun Sep 28 10:26:48 EDT 2025 Thu Apr 03 06:55:02 EDT 2025 Sat Nov 29 07:24:46 EST 2025 Tue Nov 18 22:25:28 EST 2025 Fri Feb 23 02:45:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt A |
| Keywords | Heavy metal stabilization Soil remediation Cadmium Enzyme activity Accelerated aging Biochar |
| Language | English |
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a418t-636ee0736fefaf9b45e4cdfcfdb4c8a29935c95470ef1531fcea35909771bc4a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9712-6333 0000-0003-4911-6971 |
| PMID | 33143976 |
| PQID | 2457688773 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2551905775 proquest_miscellaneous_2457688773 pubmed_primary_33143976 crossref_citationtrail_10_1016_j_envpol_2020_115846 crossref_primary_10_1016_j_envpol_2020_115846 elsevier_sciencedirect_doi_10_1016_j_envpol_2020_115846 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 2021-01-00 2021-Jan-01 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Environmental pollution (1987) |
| PublicationTitleAlternate | Environ Pollut |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Daou, Périssol, Luglia, Calvert, Criquet (bib8) 2016; 93 Liu, Li, Song, Guo (bib25) 2018; 633 Tang, Zhang, Zhang, Ren, Zhou, Zheng, Luo, Yang, Huang, Chen (bib52) 2020; 701 Zhao, O’Connor, Shen, Tsang, Rinklebe, Hou (bib60) 2020; 264 Liu, Zhang (bib63) 2012; 14 Miura, Jones, Hill, Jones (bib33) 2019; 144 He, Zhong, Liu, Dai, Brookes, Xu (bib16) 2019; 252 Houba, Temminghoff, Gaikhorst, van Vark (bib17) 2000; 31 Meng, Huang, Xu, Deng, Lin, Wang (bib29) 2020; 263 Jing, Chen, Chen, Liu, Wen, Hu, Yang, Guo, Xu, Yu (bib21) 2020; 257 O’Connor, Peng, Zhang, Tsang, Alessi, Shen, Bolan, Hou (bib35) 2018; 619–620 Zhang, Yang, Ju, Liu, Zheng (bib59) 2019; 26 Mia, Dijkstra, Singh (bib30) 2017; 51 Cao, Jing, Hao, Wang (bib3) 2019; 14 Xu, Zhao, Yang, He, Wei, Tan, Wang, Lin (bib54) 2020; 261 Elzobair, Stromberger, Ippolito, Lentz (bib11) 2016; 142 Paz-Ferreiro, Fu (bib38) 2016; 27 Shen, Hou, Zhao, Xu, Ok, Bolan, Alessi (bib44) 2018; 619–620 Hu, Cheng (bib18) 2016; 214 Ren, Sun, Wang, Zhang, Zhu (bib41) 2018; 242 (bib32) 2018 Duan, Oleszczuk, Pan, Xing (bib10) 2019; 1 Shen, Zhang, Hou, Tsang, Ok, Alessi (bib46) 2019; 122 Hu, Cheng, Tao (bib19) 2016; 92–93 Masiello, Chen, Gao, Liu, Cheng, Bennett, Rudgers, Wagner, Zygourakis, Silberg (bib28) 2013; 47 Shen, Jin, O’Connor, Hou (bib45) 2019; 53 Li, Lu, Xu, Liu (bib23) 2019; 352 Sui, Zuo, Chen, Li, Pan, Crowley (bib49) 2018; 25 Cui, Zeng, Qin, Feng (bib7) 2020; 263 Rauret, López-Sánchez, Sahuquillo, Barahona, Lachica, Ure, Davidson, Gomez, Lück, Bacon, Yli-Halla, Muntau, Quevauviller (bib40) 2000; 2 Ali, Shaheen, Guo, Li, Xiao, Wahid, Azeem, Sohail, Zhang, Rinklebe, Li, Zhang (bib1) 2020; 264 He, Sun, Hu, Zeng, Yu, Cheng (bib15) 2017; 24 Yang, Liu, McGrouther, Huang, Lu, Guo, He, Lin, Che, Ye, Wang (bib56) 2016; 23 Tan, Ma, Yang, Cui, Wang, Wang, Wu, Zheng (bib50) 2020; 699 Hale, Hanley, Lehmann, Zimmerman, Cornelissen (bib13) 2011; 45 Li, Luo, Teng (bib24) 2008 Müller, Martin, Stevens, Laughlin, Kammann, Ottow, Jäger (bib34) 2002; 34 Cui, Pan, Li, Bian, Liu, Yan, Quan, Ding, Chen, Liu, Liu, Yin, Wei, Yang, Hussain (bib6) 2016; 93 Xu, Xu, Tsang, Cao (bib55) 2018; 242 Singh, Fang, Johnston (bib47) 2016; 80 Guan, Zhang, Zhang (bib12) 1986 Liu, Liu, Ambus, Zhang, Hansen, Lin, Shen, Liu, Bei, Zhu, Wang, Ma, Lin, Yu, Zhu, Xie (bib26) 2016; 8 Tang, Zhang, Ren, Zhou, Gao, Luo, Yang, Peng, Huang, Chen (bib51) 2019; 242 Ding, Liu, Liu, Li, Tan, Huang, Zeng, Zhou, Zheng (bib9) 2016; 36 Song, Zhang, Ma, Chang, Gong (bib48) 2014; 50 Zhu, Chen, Zhu, Xing (bib62) 2017; 227 Harvey, Herbert, Rhue, Kuo (bib14) 2011; 45 Li, Dong, da Silva, de Oliveira, Chen, Ma (bib22) 2017; 178 Cao, Ma, Liang, Gao, Harris (bib2) 2011; 45 Cui, Noerpel, Scheckel, Ippolito (bib5) 2019; 126 Wang, Ren, Wang, Cai, Xia, Ding (bib53) 2019; 79 Liu, Dai, Jin, Dong, Peng, Wu, Liang, Pan, Xing (bib27) 2018; 52 Yuan, Xu, Zhang (bib57) 2011; 102 Shen, Zhang, McMillan, Jin, Al-Tabbaa (bib43) 2017; 24 (bib4) 1990 Qi, Lamb, Naidu, Bolan, Yan, Ok, Rahman, Choppala (bib39) 2018; 610–611 Paz-Ferreiro, Fu, Méndez, Gascó (bib37) 2014; 14 Zhao, Nan, Kan, Xu, Qiu, Cao (bib61) 2019; 254 Zhang, Guo, Zhao, He, Wang, Zhu, Yan, Liu, Sun, Zhao, Qian (bib58) 2016; 218 Paz-Ferreiro, Gascó, Gutiérrez, Méndez (bib36) 2012; 48 Riah-Anglet, Trinsoutrot-Gattin, Martin-Laurent, Laroche-Ajzenberg, Norini, Latour, Laval (bib42) 2015; 86 Huang, Liu, Zeng, Xu, Huang, Deng, Wang, Wan (bib20) 2017; 174 Shen (10.1016/j.envpol.2020.115846_bib43) 2017; 24 Masiello (10.1016/j.envpol.2020.115846_bib28) 2013; 47 Li (10.1016/j.envpol.2020.115846_bib22) 2017; 178 Liu (10.1016/j.envpol.2020.115846_bib27) 2018; 52 Zhao (10.1016/j.envpol.2020.115846_bib61) 2019; 254 Riah-Anglet (10.1016/j.envpol.2020.115846_bib42) 2015; 86 Tang (10.1016/j.envpol.2020.115846_bib52) 2020; 701 Yang (10.1016/j.envpol.2020.115846_bib56) 2016; 23 Cui (10.1016/j.envpol.2020.115846_bib7) 2020; 263 Guan (10.1016/j.envpol.2020.115846_bib12) 1986 Meng (10.1016/j.envpol.2020.115846_bib29) 2020; 263 (10.1016/j.envpol.2020.115846_bib4) 1990 Shen (10.1016/j.envpol.2020.115846_bib45) 2019; 53 Wang (10.1016/j.envpol.2020.115846_bib53) 2019; 79 Zhu (10.1016/j.envpol.2020.115846_bib62) 2017; 227 Li (10.1016/j.envpol.2020.115846_bib24) 2008 Xu (10.1016/j.envpol.2020.115846_bib54) 2020; 261 Harvey (10.1016/j.envpol.2020.115846_bib14) 2011; 45 Ding (10.1016/j.envpol.2020.115846_bib9) 2016; 36 Paz-Ferreiro (10.1016/j.envpol.2020.115846_bib36) 2012; 48 Miura (10.1016/j.envpol.2020.115846_bib33) 2019; 144 Hu (10.1016/j.envpol.2020.115846_bib19) 2016; 92–93 Houba (10.1016/j.envpol.2020.115846_bib17) 2000; 31 Cao (10.1016/j.envpol.2020.115846_bib2) 2011; 45 Zhang (10.1016/j.envpol.2020.115846_bib58) 2016; 218 Huang (10.1016/j.envpol.2020.115846_bib20) 2017; 174 Cui (10.1016/j.envpol.2020.115846_bib5) 2019; 126 Liu (10.1016/j.envpol.2020.115846_bib26) 2016; 8 Cui (10.1016/j.envpol.2020.115846_bib6) 2016; 93 Jing (10.1016/j.envpol.2020.115846_bib21) 2020; 257 Ali (10.1016/j.envpol.2020.115846_bib1) 2020; 264 Hale (10.1016/j.envpol.2020.115846_bib13) 2011; 45 Paz-Ferreiro (10.1016/j.envpol.2020.115846_bib37) 2014; 14 Ren (10.1016/j.envpol.2020.115846_bib41) 2018; 242 Rauret (10.1016/j.envpol.2020.115846_bib40) 2000; 2 Song (10.1016/j.envpol.2020.115846_bib48) 2014; 50 Tan (10.1016/j.envpol.2020.115846_bib50) 2020; 699 Hu (10.1016/j.envpol.2020.115846_bib18) 2016; 214 Tang (10.1016/j.envpol.2020.115846_bib51) 2019; 242 Duan (10.1016/j.envpol.2020.115846_bib10) 2019; 1 Liu (10.1016/j.envpol.2020.115846_bib63) 2012; 14 Xu (10.1016/j.envpol.2020.115846_bib55) 2018; 242 He (10.1016/j.envpol.2020.115846_bib16) 2019; 252 O’Connor (10.1016/j.envpol.2020.115846_bib35) 2018; 619–620 Shen (10.1016/j.envpol.2020.115846_bib46) 2019; 122 Paz-Ferreiro (10.1016/j.envpol.2020.115846_bib38) 2016; 27 Yuan (10.1016/j.envpol.2020.115846_bib57) 2011; 102 Mia (10.1016/j.envpol.2020.115846_bib30) 2017; 51 Sui (10.1016/j.envpol.2020.115846_bib49) 2018; 25 He (10.1016/j.envpol.2020.115846_bib15) 2017; 24 Qi (10.1016/j.envpol.2020.115846_bib39) 2018; 610–611 Zhao (10.1016/j.envpol.2020.115846_bib60) 2020; 264 Cao (10.1016/j.envpol.2020.115846_bib3) 2019; 14 Liu (10.1016/j.envpol.2020.115846_bib25) 2018; 633 Zhang (10.1016/j.envpol.2020.115846_bib59) 2019; 26 Elzobair (10.1016/j.envpol.2020.115846_bib11) 2016; 142 Singh (10.1016/j.envpol.2020.115846_bib47) 2016; 80 (10.1016/j.envpol.2020.115846_bib32) 2018 Shen (10.1016/j.envpol.2020.115846_bib44) 2018; 619–620 Li (10.1016/j.envpol.2020.115846_bib23) 2019; 352 Müller (10.1016/j.envpol.2020.115846_bib34) 2002; 34 Daou (10.1016/j.envpol.2020.115846_bib8) 2016; 93 |
| References_xml | – year: 1990 ident: bib4 article-title: Elemental Background Values of Soils in China – volume: 144 start-page: 196 year: 2019 end-page: 199 ident: bib33 article-title: Freeze-thaw and dry-wet events reduce microbial extracellular enzyme activity, but not organic matter turnover in an agricultural grassland soil publication-title: Appl. Soil Ecol. – volume: 92–93 start-page: 515 year: 2016 end-page: 532 ident: bib19 article-title: The challenges and solutions for cadmium-contaminated rice in China: a critical review publication-title: Environ. Int. – volume: 227 start-page: 98 year: 2017 end-page: 115 ident: bib62 article-title: Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review publication-title: Environ. Pollut. – volume: 122 start-page: 357 year: 2019 end-page: 362 ident: bib46 article-title: Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue publication-title: Environ. Int. – volume: 252 start-page: 846 year: 2019 end-page: 855 ident: bib16 article-title: Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China publication-title: Environ. Pollut. – volume: 36 start-page: 36 year: 2016 ident: bib9 article-title: Biochar to improve soil fertility publication-title: A review. Agron. Sustain. Dev. – year: 1986 ident: bib12 article-title: Soil Enzyme and its Research Methods – volume: 24 start-page: 9387 year: 2017 end-page: 9398 ident: bib15 article-title: Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations publication-title: Environ. Sci. Pollut. Res. – volume: 261 start-page: 114133 year: 2020 ident: bib54 article-title: Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil publication-title: Environ. Pollut. – volume: 214 start-page: 400 year: 2016 end-page: 409 ident: bib18 article-title: A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions publication-title: Environ. Pollut. – volume: 352 start-page: 96 year: 2019 end-page: 103 ident: bib23 article-title: How close is artificial biochar aging to natural biochar aging in fields? A meta-analysis publication-title: Geoderma – volume: 86 start-page: 121 year: 2015 end-page: 130 ident: bib42 article-title: Soil microbial community structure and function relationships: a heat stress experiment publication-title: Appl. Soil Ecol. – volume: 264 start-page: 114773 year: 2020 ident: bib1 article-title: Apricot shell- and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil publication-title: Environ. Pollut. – volume: 1 start-page: 339 year: 2019 end-page: 351 ident: bib10 article-title: Environmental behavior of engineered biochars and their aging processes in soil publication-title: Biochar – volume: 619–620 start-page: 185 year: 2018 end-page: 193 ident: bib44 article-title: Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing publication-title: Sci. Total Environ. – volume: 699 start-page: 134223 year: 2020 ident: bib50 article-title: Effect of three artificial aging techniques on physiochemical properties and Pb adsorption capacities of different biochars publication-title: Sci. Total Environ. – volume: 263 start-page: 114553 year: 2020 ident: bib7 article-title: Measures for reducing nitrate leaching in orchards: a review publication-title: Environ. Pollut. – volume: 23 start-page: 974 year: 2016 end-page: 984 ident: bib56 article-title: Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil publication-title: Environ. Sci. Pollut. Res. – volume: 633 start-page: 206 year: 2018 end-page: 219 ident: bib25 article-title: Remediation techniques for heavy metal-contaminated soils: principles and applicability publication-title: Sci. Total Environ. – volume: 8 start-page: 148 year: 2016 end-page: 159 ident: bib26 article-title: Carbon footprint of rice production under biochar amendment – a case study in a Chinese rice cropping system publication-title: Glob Change Biol Bioenergy – volume: 80 start-page: 613 year: 2016 end-page: 622 ident: bib47 article-title: A Fourier transform infrared study of biochar aging in soils publication-title: Soil Sci. Soc. Am. J. – volume: 45 start-page: 10445 year: 2011 end-page: 10453 ident: bib13 article-title: Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar publication-title: Environ. Sci. Technol. – volume: 45 start-page: 5550 year: 2011 end-page: 5556 ident: bib14 article-title: Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow sorption microcalorimetry publication-title: Environ. Sci. Technol. – volume: 242 start-page: 1362 year: 2018 end-page: 1370 ident: bib55 article-title: Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils publication-title: Environ. Pollut. – volume: 610–611 start-page: 1457 year: 2018 end-page: 1466 ident: bib39 article-title: Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar publication-title: Sci. Total Environ. – volume: 25 start-page: 3368 year: 2018 end-page: 3377 ident: bib49 article-title: Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study publication-title: Environ. Sci. Pollut. Res. – volume: 619–620 start-page: 815 year: 2018 end-page: 826 ident: bib35 article-title: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials publication-title: Sci. Total Environ. – volume: 34 start-page: 1325 year: 2002 end-page: 1331 ident: bib34 article-title: Processes leading to N publication-title: Soil Biol. Biochem. – volume: 93 start-page: 142 year: 2016 end-page: 149 ident: bib8 article-title: Effects of drying–rewetting or freezing–thawing cycles on enzymatic activities of different Mediterranean soils publication-title: Soil Biol. Biochem. – volume: 50 start-page: 321 year: 2014 end-page: 332 ident: bib48 article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil publication-title: Biol. Fertil. Soils – volume: 27 start-page: 14 year: 2016 end-page: 25 ident: bib38 article-title: Biological indices for soil quality evaluation: perspectives and limitations publication-title: Land Degrad. Dev. – volume: 264 start-page: 114687 year: 2020 ident: bib60 article-title: Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: an accelerated simulation of long-term aging effects publication-title: Environ. Pollut. – volume: 178 start-page: 466 year: 2017 end-page: 478 ident: bib22 article-title: Mechanisms of metal sorption by biochars: biochar characteristics and modifications publication-title: Chemosphere – volume: 24 start-page: 12809 year: 2017 end-page: 12819 ident: bib43 article-title: Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk publication-title: Environ. Sci. Pollut. Res. – year: 2008 ident: bib24 article-title: Research Methods of Soil and Environmental Microorganism – volume: 14 start-page: 483 year: 2014 end-page: 494 ident: bib37 article-title: Interactive effects of biochar and the earthworm publication-title: J. Soils Sediments – volume: 2 start-page: 228 year: 2000 end-page: 233 ident: bib40 article-title: Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content publication-title: J. Environ. Monit. – volume: 52 start-page: 12740 year: 2018 end-page: 12747 ident: bib27 article-title: The negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals? publication-title: Environ. Sci. Technol. – volume: 242 start-page: 1880 year: 2018 end-page: 1886 ident: bib41 article-title: Effect of aging in field soil on biochar’s properties and its sorption capacity publication-title: Environ. Pollut. – volume: 218 start-page: 513 year: 2016 end-page: 522 ident: bib58 article-title: Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil publication-title: Environ. Pollut. – volume: 142 start-page: 145 year: 2016 end-page: 152 ident: bib11 article-title: Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol publication-title: Chemosphere – volume: 257 start-page: 113592 year: 2020 ident: bib21 article-title: Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice publication-title: Environ. Pollut. – volume: 26 start-page: 4867 year: 2019 end-page: 4877 ident: bib59 article-title: Mercury adsorption to aged biochar and its management in China publication-title: Environ. Sci. Pollut. Res. – volume: 45 start-page: 4884 year: 2011 end-page: 4889 ident: bib2 article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar publication-title: Environ. Sci. Technol. – year: 2018 ident: bib32 article-title: Soil Environmental Quality – Risk Control Standard for Soil Contamination of Agricultural Land (GB 15618–2018) – volume: 31 start-page: 1299 year: 2000 end-page: 1396 ident: bib17 article-title: Soil analysis procedures using 0.01 M calcium chloride as extraction reagent publication-title: Commun. Soil Sci. Plant Anal. – volume: 48 start-page: 511 year: 2012 end-page: 517 ident: bib36 article-title: Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil publication-title: Biol. Fertil. Soils – volume: 79 start-page: 91 year: 2019 end-page: 99 ident: bib53 article-title: Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods publication-title: J. Environ. Sci. – volume: 51 start-page: 8359 year: 2017 end-page: 8367 ident: bib30 article-title: Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium publication-title: Environ. Sci. Technol. – volume: 102 start-page: 3488 year: 2011 end-page: 3497 ident: bib57 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. – volume: 93 start-page: 1 year: 2016 end-page: 8 ident: bib6 article-title: Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: a five-year field experiment publication-title: Ecol. Eng. – volume: 14 start-page: 4329 year: 2019 end-page: 4343 ident: bib3 article-title: Changes in the physicochemical characteristics of peanut straw biochar after freeze-thaw and dry-wet aging treatments of the biomass publication-title: BioResources – volume: 174 start-page: 545 year: 2017 end-page: 553 ident: bib20 article-title: The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment publication-title: Chemosphere – volume: 53 start-page: 11615 year: 2019 end-page: 11617 ident: bib45 article-title: Solidification/stabilization for soil remediation: an old technology with new vitality publication-title: Environ. Sci. Technol. – volume: 242 start-page: 121 year: 2019 end-page: 130 ident: bib51 article-title: Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution publication-title: J. Environ. Manag. – volume: 126 start-page: 69 year: 2019 end-page: 75 ident: bib5 article-title: Wheat straw biochar reduces environmental cadmium bioavailability publication-title: Environ. Int. – volume: 701 start-page: 134751 year: 2020 ident: bib52 article-title: Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost publication-title: Sci. Total Environ. – volume: 14 start-page: 745 year: 2012 end-page: 750 ident: bib63 article-title: Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments publication-title: Int. J. Agric. Biol. – volume: 263 start-page: 114449 year: 2020 ident: bib29 article-title: Transport and transformation of Cd between biochar and soil under combined dry-wet and freeze-thaw aging publication-title: Environ. Pollut. – volume: 47 start-page: 11496 year: 2013 end-page: 11503 ident: bib28 article-title: Biochar and microbial signaling: production conditions determine effects on microbial communication publication-title: Environ. Sci. Technol. – volume: 254 start-page: 13114 year: 2019 ident: bib61 article-title: Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent publication-title: Environ. Pollut. – volume: 93 start-page: 142 year: 2016 ident: 10.1016/j.envpol.2020.115846_bib8 article-title: Effects of drying–rewetting or freezing–thawing cycles on enzymatic activities of different Mediterranean soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.11.006 – volume: 31 start-page: 1299 year: 2000 ident: 10.1016/j.envpol.2020.115846_bib17 article-title: Soil analysis procedures using 0.01 M calcium chloride as extraction reagent publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620009370514 – volume: 14 start-page: 483 year: 2014 ident: 10.1016/j.envpol.2020.115846_bib37 article-title: Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities publication-title: J. Soils Sediments doi: 10.1007/s11368-013-0806-z – volume: 174 start-page: 545 year: 2017 ident: 10.1016/j.envpol.2020.115846_bib20 article-title: The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.130 – volume: 122 start-page: 357 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib46 article-title: Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue publication-title: Environ. Int. doi: 10.1016/j.envint.2018.11.045 – year: 1986 ident: 10.1016/j.envpol.2020.115846_bib12 – volume: 142 start-page: 145 year: 2016 ident: 10.1016/j.envpol.2020.115846_bib11 article-title: Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.044 – volume: 242 start-page: 121 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib51 article-title: Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution publication-title: J. Environ. Manag. – volume: 264 start-page: 114687 year: 2020 ident: 10.1016/j.envpol.2020.115846_bib60 article-title: Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: an accelerated simulation of long-term aging effects publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114687 – volume: 27 start-page: 14 year: 2016 ident: 10.1016/j.envpol.2020.115846_bib38 article-title: Biological indices for soil quality evaluation: perspectives and limitations publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2262 – volume: 45 start-page: 4884 year: 2011 ident: 10.1016/j.envpol.2020.115846_bib2 article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar publication-title: Environ. Sci. Technol. doi: 10.1021/es103752u – volume: 214 start-page: 400 year: 2016 ident: 10.1016/j.envpol.2020.115846_bib18 article-title: A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.04.028 – volume: 1 start-page: 339 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib10 article-title: Environmental behavior of engineered biochars and their aging processes in soil publication-title: Biochar doi: 10.1007/s42773-019-00030-5 – volume: 53 start-page: 11615 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib45 article-title: Solidification/stabilization for soil remediation: an old technology with new vitality publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b04990 – volume: 47 start-page: 11496 year: 2013 ident: 10.1016/j.envpol.2020.115846_bib28 article-title: Biochar and microbial signaling: production conditions determine effects on microbial communication publication-title: Environ. Sci. Technol. doi: 10.1021/es401458s – volume: 264 start-page: 114773 year: 2020 ident: 10.1016/j.envpol.2020.115846_bib1 article-title: Apricot shell- and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114773 – volume: 45 start-page: 10445 year: 2011 ident: 10.1016/j.envpol.2020.115846_bib13 article-title: Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar publication-title: Environ. Sci. Technol. doi: 10.1021/es202970x – year: 1990 ident: 10.1016/j.envpol.2020.115846_bib4 – volume: 257 start-page: 113592 year: 2020 ident: 10.1016/j.envpol.2020.115846_bib21 article-title: Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113592 – volume: 80 start-page: 613 year: 2016 ident: 10.1016/j.envpol.2020.115846_bib47 article-title: A Fourier transform infrared study of biochar aging in soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.11.0414 – volume: 701 start-page: 134751 year: 2020 ident: 10.1016/j.envpol.2020.115846_bib52 article-title: Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134751 – volume: 2 start-page: 228 year: 2000 ident: 10.1016/j.envpol.2020.115846_bib40 publication-title: J. Environ. Monit. doi: 10.1039/b001496f – volume: 36 start-page: 36 year: 2016 ident: 10.1016/j.envpol.2020.115846_bib9 article-title: Biochar to improve soil fertility publication-title: A review. Agron. Sustain. Dev. doi: 10.1007/s13593-016-0372-z – volume: 24 start-page: 12809 year: 2017 ident: 10.1016/j.envpol.2020.115846_bib43 article-title: Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8847-2 – year: 2018 ident: 10.1016/j.envpol.2020.115846_bib32 – volume: 263 start-page: 114553 year: 2020 ident: 10.1016/j.envpol.2020.115846_bib7 article-title: Measures for reducing nitrate leaching in orchards: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114553 – volume: 254 start-page: 13114 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib61 article-title: Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113114 – volume: 178 start-page: 466 year: 2017 ident: 10.1016/j.envpol.2020.115846_bib22 article-title: Mechanisms of metal sorption by biochars: biochar characteristics and modifications publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.03.072 – volume: 102 start-page: 3488 year: 2011 ident: 10.1016/j.envpol.2020.115846_bib57 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.018 – volume: 51 start-page: 8359 year: 2017 ident: 10.1016/j.envpol.2020.115846_bib30 article-title: Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00647 – volume: 261 start-page: 114133 year: 2020 ident: 10.1016/j.envpol.2020.115846_bib54 article-title: Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114133 – volume: 50 start-page: 321 year: 2014 ident: 10.1016/j.envpol.2020.115846_bib48 article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-013-0857-8 – volume: 14 start-page: 745 year: 2012 ident: 10.1016/j.envpol.2020.115846_bib63 article-title: Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments publication-title: Int. J. Agric. Biol. – volume: 126 start-page: 69 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib5 article-title: Wheat straw biochar reduces environmental cadmium bioavailability publication-title: Environ. Int. doi: 10.1016/j.envint.2019.02.022 – volume: 610–611 start-page: 1457 year: 2018 ident: 10.1016/j.envpol.2020.115846_bib39 article-title: Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.228 – volume: 14 start-page: 4329 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib3 article-title: Changes in the physicochemical characteristics of peanut straw biochar after freeze-thaw and dry-wet aging treatments of the biomass publication-title: BioResources doi: 10.15376/biores.14.2.4329-4343 – volume: 86 start-page: 121 year: 2015 ident: 10.1016/j.envpol.2020.115846_bib42 article-title: Soil microbial community structure and function relationships: a heat stress experiment publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.10.001 – volume: 218 start-page: 513 year: 2016 ident: 10.1016/j.envpol.2020.115846_bib58 article-title: Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.07.031 – volume: 26 start-page: 4867 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib59 article-title: Mercury adsorption to aged biochar and its management in China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-3945-3 – volume: 45 start-page: 5550 year: 2011 ident: 10.1016/j.envpol.2020.115846_bib14 article-title: Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow sorption microcalorimetry publication-title: Environ. Sci. Technol. doi: 10.1021/es104401h – volume: 227 start-page: 98 year: 2017 ident: 10.1016/j.envpol.2020.115846_bib62 article-title: Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.04.032 – volume: 34 start-page: 1325 year: 2002 ident: 10.1016/j.envpol.2020.115846_bib34 article-title: Processes leading to N2O emissions in grassland soil during freezing and thawing publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00076-7 – volume: 144 start-page: 196 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib33 article-title: Freeze-thaw and dry-wet events reduce microbial extracellular enzyme activity, but not organic matter turnover in an agricultural grassland soil publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2019.08.002 – volume: 24 start-page: 9387 year: 2017 ident: 10.1016/j.envpol.2020.115846_bib15 article-title: Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8548-x – volume: 252 start-page: 846 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib16 article-title: Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.05.151 – volume: 242 start-page: 1362 year: 2018 ident: 10.1016/j.envpol.2020.115846_bib55 article-title: Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.08.012 – volume: 242 start-page: 1880 year: 2018 ident: 10.1016/j.envpol.2020.115846_bib41 article-title: Effect of aging in field soil on biochar’s properties and its sorption capacity publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.07.078 – volume: 48 start-page: 511 year: 2012 ident: 10.1016/j.envpol.2020.115846_bib36 article-title: Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-011-0644-3 – volume: 699 start-page: 134223 year: 2020 ident: 10.1016/j.envpol.2020.115846_bib50 article-title: Effect of three artificial aging techniques on physiochemical properties and Pb adsorption capacities of different biochars publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134223 – volume: 79 start-page: 91 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib53 article-title: Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2018.11.007 – volume: 92–93 start-page: 515 year: 2016 ident: 10.1016/j.envpol.2020.115846_bib19 article-title: The challenges and solutions for cadmium-contaminated rice in China: a critical review publication-title: Environ. Int. doi: 10.1016/j.envint.2016.04.042 – volume: 8 start-page: 148 year: 2016 ident: 10.1016/j.envpol.2020.115846_bib26 article-title: Carbon footprint of rice production under biochar amendment – a case study in a Chinese rice cropping system publication-title: Glob Change Biol Bioenergy doi: 10.1111/gcbb.12248 – volume: 263 start-page: 114449 year: 2020 ident: 10.1016/j.envpol.2020.115846_bib29 article-title: Transport and transformation of Cd between biochar and soil under combined dry-wet and freeze-thaw aging publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114449 – volume: 93 start-page: 1 year: 2016 ident: 10.1016/j.envpol.2020.115846_bib6 article-title: Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: a five-year field experiment publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2016.05.007 – volume: 23 start-page: 974 year: 2016 ident: 10.1016/j.envpol.2020.115846_bib56 article-title: Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4233-0 – year: 2008 ident: 10.1016/j.envpol.2020.115846_bib24 – volume: 52 start-page: 12740 year: 2018 ident: 10.1016/j.envpol.2020.115846_bib27 article-title: The negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00672 – volume: 352 start-page: 96 year: 2019 ident: 10.1016/j.envpol.2020.115846_bib23 article-title: How close is artificial biochar aging to natural biochar aging in fields? A meta-analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.006 – volume: 619–620 start-page: 815 year: 2018 ident: 10.1016/j.envpol.2020.115846_bib35 article-title: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.132 – volume: 25 start-page: 3368 year: 2018 ident: 10.1016/j.envpol.2020.115846_bib49 article-title: Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0652-4 – volume: 633 start-page: 206 year: 2018 ident: 10.1016/j.envpol.2020.115846_bib25 article-title: Remediation techniques for heavy metal-contaminated soils: principles and applicability publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.161 – volume: 619–620 start-page: 185 year: 2018 ident: 10.1016/j.envpol.2020.115846_bib44 article-title: Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.038 |
| SSID | ssj0004333 |
| Score | 2.542028 |
| Snippet | Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 115846 |
| SubjectTerms | Accelerated aging agricultural soils beta-fructofuranosidase Biochar Cadmium carbonates catalase Charcoal corn straw Enzyme activity freeze-thaw cycles Heavy metal stabilization phytoaccumulation pollution Soil soil enzymes Soil Pollutants - analysis Soil remediation urease wheat straw |
| Title | Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet–dry and freeze–thaw cycling |
| URI | https://dx.doi.org/10.1016/j.envpol.2020.115846 https://www.ncbi.nlm.nih.gov/pubmed/33143976 https://www.proquest.com/docview/2457688773 https://www.proquest.com/docview/2551905775 |
| Volume | 268 |
| WOSCitedRecordID | wos000600553000033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004333 issn: 0269-7491 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LT9tAEIBXAXpoD1ULpaUPNJUqLpVRkrW96yOKQLRFKVKDlJ6stb0LpsGmSQiEX9Yf1B_S2YcTp5RCD71Y0caJHc0Xz2PnQcg7nraVH0TKS9Am8vwwSzzeotJTDLVhsylRzaZm2ATrdnm_Hx02Gj-rWpjJgBUFv7qKzv-rqHENha1LZ_9B3LMvxQV8jULHI4odj_cSvOtHrPf37QCiQscLdA7s9cw87JgGrYiBtj6TvNS1V7ZZsyyup2e2xcbENFvVARHh2hJrgQ6mJr1d6BQaba2KwTdhTFVxPJz38RiVOR7yMz0crEpwv5RjLxvafk9qKOW19MYn4vJ9OtXlmccLewTz8jtdKabHMTtO-W_hi68u3v1J5PO9AbvUzwel-1qTvyDt8r5UM1XUEyZS_OXkoh79aLdq0Q_7wOaMeuhD2aCE_MOae8q3Q17D-XDsQsX2sY1mMbeR0BsaxQY3TrdlMcFfu433oNVMdfpiA-_u53jv6OAg7u32e1vn3z0920znALhBL0tkpc2CiC-TlZ0Pu_2P8_pdSk0hSHXfVYmnyUO8eeHbTKjbXCRjKvWekMfOx4Edy-ZT0pDFKlnbQV7Ksylsgck6Nts5q-RRrSHmKllfEDw4xTNaIz8s1VAqMFRDWcAC1fqdTgbIFnRzSKZQUW2WLNUwpxryAgTUqYY61VBRDXWqQVMNM6pBUw2OanOZGtXgqH5GjvZ2e519zw0d8YTf4mMvpKGUqPdChTSqKPED6aeZSlWW-CkXaL3RII0CnzWlQmuhpVIpaBA10Y9qJakv6DpZLspCviDg80w1UxGEETrtYcYjRpPMD0PUeRnzJdsgtJJjnLqO_HowzCCuUi9PYyv9WEs_ttLfIN7sU-e2I80d57MKkdhZ1dZajhHxOz75tiIqRqWjdxJFIcuLUdz2dZiCM0b_cg76YhF6gyzYIM8tjrP7pbRlHKGX97jCK_Jw_sd_TZbHwwv5hjxIJ-N8NNwkS6zPN90f6heKmhdl |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+aging+on+stabilization+of+Cd+and+Ni+by+biochars+and+enzyme+activities+in+a+historically+contaminated+alkaline+agricultural+soil+simulated+with+wet-dry+and+freeze-thaw+cycling&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Yang%2C+Kai&rft.au=Wang%2C+Xilong&rft.au=Cheng%2C+Hefa&rft.au=Tao%2C+Shu&rft.date=2021-01-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=268&rft.issue=Pt+A&rft.spage=115846&rft_id=info:doi/10.1016%2Fj.envpol.2020.115846&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |