Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized Sylvester-transpose matrix equation

Consider a generalized Sylvester-transpose matrix equation with rectangular coefficient matrices. Based on gradients and hierarchical identification principle, we derive an iterative algorithm to produce a sequence of approximated solutions with a reasonable stopping rule concerning a relative norm-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 6; číslo 8; s. 8477 - 8496
Hlavní autoři: Boonruangkan, Nunthakarn, Chansangiam, Pattrawut
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2021
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Consider a generalized Sylvester-transpose matrix equation with rectangular coefficient matrices. Based on gradients and hierarchical identification principle, we derive an iterative algorithm to produce a sequence of approximated solutions with a reasonable stopping rule concerning a relative norm-error. A convergence analysis via Banach fixed-point theorem reveals the sequence converges to a unique solution of the matrix equation for any given initial matrix if and only if the convergence factor is chosen appropriately in a certain range. The performance of algorithm is theoretically analysed through the convergence rate and error estimations. The optimal convergence factor is chosen to attain the fastest asymptotic behaviour. Finally, numerical experiments are provided to illustrate the capability and efficiency of the proposed algorithm, compared to recent gradient-based iterative algorithms.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021492