High-Resolution Shortwave Infrared Imaging of Vascular Disorders Using Gold Nanoclusters
We synthesized a generation of water-soluble, atomically precise gold nanoclusters (Au NCs) with anisotropic surface containing a short dithiol pegylated chain (AuMHA/TDT). The AuMHA/TDT exhibit a high brightness (QY ∼ 6%) in the shortwave infrared (SWIR) spectrum with a detection above 1250 nm. Fur...
Saved in:
| Published in: | ACS nano Vol. 14; no. 4; pp. 4973 - 4981 |
|---|---|
| Main Authors: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Chemical Society
28.04.2020
|
| Subjects: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We synthesized a generation of water-soluble, atomically precise gold nanoclusters (Au NCs) with anisotropic surface containing a short dithiol pegylated chain (AuMHA/TDT). The AuMHA/TDT exhibit a high brightness (QY ∼ 6%) in the shortwave infrared (SWIR) spectrum with a detection above 1250 nm. Furthermore, they show an extended half-life in blood (t 1/2ß = 19.54 ± 0.05 h) and a very weak accumulation in organs. We also developed a non-invasive, whole-body vascular imaging system in the SWIR window with high-resolution, benefiting from a series of Monte Carlo image processing. The imaging process enabled to improve contrast by 1 order of magnitude and enhance the spatial resolution by 59%. After systemic administration of these nanoprobes in mice, we can quantify vessel complexity in depth (>4 mm), allowing to detect very subtle vascular disorders non-invasively in bone morphogenetic protein 9 (Bmp9)-deficient mice. The combination of these anisotropic surface charged Au NCs plus an improved SWIR imaging device allows a precise mapping at high-resolution and an in depth understanding of the organization of the vascular network in live animals. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1936-0851 1936-086X 1936-086X |
| DOI: | 10.1021/acsnano.0c01174 |