A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction
The environmental factors of landslide susceptibility are generally uncorrelated or non-linearly correlated, resulting in the limited prediction performances of conventional machine learning methods for landslide susceptibility prediction (LSP). Deep learning methods can exploit low-level features a...
Uložené v:
| Vydané v: | Landslides Ročník 17; číslo 1; s. 217 - 229 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1612-510X, 1612-5118 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The environmental factors of landslide susceptibility are generally uncorrelated or non-linearly correlated, resulting in the limited prediction performances of conventional machine learning methods for landslide susceptibility prediction (LSP). Deep learning methods can exploit low-level features and high-level representations of information from environmental factors. In this paper, a novel deep learning–based algorithm, the fully connected spare autoencoder (FC-SAE), is proposed for LSP. The FC-SAE consists of four steps: raw feature dropout in input layers, a sparse feature encoder in hidden layers, sparse feature extraction in output layers, and classification and prediction. The Sinan County of Guizhou Province in China, with a total of 23,195 landslide grid cells (306 recorded landslides) and 23,195 randomly selected non-landslide grid cells, was used as study case. The frequency ratio values of 27 environmental factors were taken as the input variables of FC-SAE. All 46,390 landslide and non-landslide grid cells were randomly divided into a training dataset (70%) and a test dataset (30%). By analyzing real landslide/non-landslide data, the performances of the FC-SAE and two other conventional machine learning methods, support vector machine (SVM) and back-propagation neural network (BPNN), were compared. The results show that the prediction rate and total accuracies of the FC-SAE are 0.854 and 85.2% which are higher than those of the SVM-only (0.827 and 81.56%) and BPNN (0.819 and 80.86%), respectively. In conclusion, the asymmetric and unsupervised FC-SAE can extract optimal non-linear features from environmental factors successfully, outperforms some conventional machine learning methods, and is promising for LSP. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1612-510X 1612-5118 |
| DOI: | 10.1007/s10346-019-01274-9 |