Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances
We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g–1) and volumetric (122 F cm–3) capacitances at high current densities (300 mA cm–2 ≈ 33 A g–1) until date...
Uloženo v:
| Vydáno v: | ACS nano Ročník 9; číslo 7; s. 7563 - 7571 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Chemical Society
28.07.2015
|
| Témata: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g–1) and volumetric (122 F cm–3) capacitances at high current densities (300 mA cm–2 ≈ 33 A g–1) until date reported for conducting polymer-based electrodes with active mass loadings as high as 9 mg cm–2. By introducing quaternary amine groups on the surface of NCFs prior to polypyrrole (PPy) polymerization, the macropore volume of the formed PPy-NCF composites can be minimized while maintaining the volume of the micro- and mesopores at the same level as when unmodified or carboxylate groups functionalized NCFs are employed as polymerization substrates. Symmetric, aqueous electrolyte-based, devices comprising these porosity-optimized electrodes exhibit device-specific volumetric energy and power densities of 3.1 mWh cm–3 and 3 W cm–3 respectively; which are among the highest values reported for conducting polymer electrodes in aqueous electrolytes. The functionality of the devices is verified by powering a red light-emitting diode with the device in different mechanically challenging states. |
|---|---|
| AbstractList | We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g super(-1)) and volumetric (122 F cm super(-3)) capacitances at high current densities (300 mA cm super(-2) approximately 33 A g super(-1)) until date reported for conducting polymer-based electrodes with active mass loadings as high as 9 mg cm super(-2). By introducing quaternary amine groups on the surface of NCFs prior to polypyrrole (PPy) polymerization, the macropore volume of the formed PPy-NCF composites can be minimized while maintaining the volume of the micro- and mesopores at the same level as when unmodified or carboxylate groups functionalized NCFs are employed as polymerization substrates. Symmetric, aqueous electrolyte-based, devices comprising these porosity-optimized electrodes exhibit device-specific volumetric energy and power densities of 3.1 mWh cm super(-3) and 3 W cm super(-3) respectively; which are among the highest values reported for conducting polymer electrodes in aqueous electrolytes. The functionality of the devices is verified by powering a red light-emitting diode with the device in different mechanically challenging states. Keywords: energy storage devices; conducting polymers; modified nanocellulose; porosity optimization; capacitance We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g(-1)) and volumetric (122 F cm(-3)) capacitances at high current densities (300 mA cm(-2) ≈ 33 A g(-1)) until date reported for conducting polymer-based electrodes with active mass loadings as high as 9 mg cm(-2). By introducing quaternary amine groups on the surface of NCFs prior to polypyrrole (PPy) polymerization, the macropore volume of the formed PPy-NCF composites can be minimized while maintaining the volume of the micro- and mesopores at the same level as when unmodified or carboxylate groups functionalized NCFs are employed as polymerization substrates. Symmetric, aqueous electrolyte-based, devices comprising these porosity-optimized electrodes exhibit device-specific volumetric energy and power densities of 3.1 mWh cm(-3) and 3 W cm(-3) respectively; which are among the highest values reported for conducting polymer electrodes in aqueous electrolytes. The functionality of the devices is verified by powering a red light-emitting diode with the device in different mechanically challenging states. We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g(-1)) and volumetric (122 F cm(-3)) capacitances at high current densities (300 mA cm(-2) approximate to 33 A g(-1)) until date reported for conducting polymer-based electrodes with active mass loadings as high as 9 mg cm(-2). By introducing quaternary amine groups on the surface of NCFs prior to polypyrrole (PPy) polymerization, the macropore volume of the formed PPy-NCF composites can be minimized while maintaining the volume of the micro- and mesopores at the same level as when unmodified or carboxylate groups functionalized NCFs are employed as polymerization substrates. Symmetric, aqueous electrolyte-based, devices comprising these porosity-optimized electrodes exhibit device-specific volumetric energy and power densities of 3.1 mWh cm(-3) and 3 W cm(-3) respectively; which are among the highest values reported for conducting polymer electrodes in aqueous electrolytes. The functionality of the devices is verified by powering a red light-emitting diode with the device in different mechanically challenging states. |
| Author | Nyholm, Leif Zhang, Peng Strømme, Maria Hua, Kai Carlsson, Daniel O Wang, Zhaohui Tammela, Petter |
| AuthorAffiliation | Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory Uppsala University Department of Chemistry-The Ångström Laboratory |
| AuthorAffiliation_xml | – name: Uppsala University – name: Department of Chemistry-The Ångström Laboratory – name: Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory |
| Author_xml | – sequence: 1 givenname: Zhaohui surname: Wang fullname: Wang, Zhaohui email: zhaohui.wang@kemi.uu.se, leif.nyholm@kemi.uu.se, maria.stromme@angstrom.uu.se – sequence: 2 givenname: Daniel O surname: Carlsson fullname: Carlsson, Daniel O – sequence: 3 givenname: Petter surname: Tammela fullname: Tammela, Petter – sequence: 4 givenname: Kai surname: Hua fullname: Hua, Kai – sequence: 5 givenname: Peng surname: Zhang fullname: Zhang, Peng – sequence: 6 givenname: Leif surname: Nyholm fullname: Nyholm, Leif email: zhaohui.wang@kemi.uu.se, leif.nyholm@kemi.uu.se, maria.stromme@angstrom.uu.se – sequence: 7 givenname: Maria surname: Strømme fullname: Strømme, Maria email: zhaohui.wang@kemi.uu.se, leif.nyholm@kemi.uu.se, maria.stromme@angstrom.uu.se |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26083393$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-261306$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNqNkUtv1DAUhS1URNuBNTuUJRKk9SN2nGUZOi1SeUgFBCvLcW5aVxk72LHa_nscZdoFUiUWlm3d7xzZ5xyiPecdIPSa4COCKTnWJjrt_BFvMZWVeIYOSMNEiaX4tfd45mQfHcZ4gzGvZS1eoH0qsGSsYQfo7jKFXhsoPvvO9ha64kv2MzAMafARio1tIcTit4WhK9bedclM1l0V3_xwv4VQftAxazYD3Nl2gOIyjRCMHrWxk8-6WztdF6fuWjuTsfUymC_xJXre6yHCq92-Qj82p9_X5-XF17NP65OLUleYTWUt-wZzavL_oBe6qySpuGxqA5KarjZEY8aAypp3RDDOKa_q1jRGMiMwl8BW6P3iG29hTK0ag93qcK-8tuqj_XmifLhSKSkqCMMi428XfAz-T4I4qa2NcxzagU9RkVpQLDhl_D9QjAlm81qhNzs0tVvoHh_x0EMG-AKY4GMM0Ks5p8l6NwVtB0WwmvtWu77Vru-sO_5H92D9tOLdosgDdeNTcDn9J-m_DFq-HA |
| CitedBy_id | crossref_primary_10_1016_j_indcrop_2023_117093 crossref_primary_10_1002_adsu_201900050 crossref_primary_10_1021_acs_langmuir_5c01694 crossref_primary_10_1002_adma_201804826 crossref_primary_10_1016_j_biombioe_2024_107265 crossref_primary_10_1016_j_carbpol_2016_06_102 crossref_primary_10_1007_s10934_016_0352_3 crossref_primary_10_1016_j_carbpol_2016_12_050 crossref_primary_10_1007_s11581_020_03438_3 crossref_primary_10_1002_smll_201800280 crossref_primary_10_1016_j_ijbiomac_2023_129081 crossref_primary_10_1016_j_nanoen_2016_01_011 crossref_primary_10_1039_C7CS00790F crossref_primary_10_1088_1402_4896_acf52f crossref_primary_10_3390_molecules22122177 crossref_primary_10_1016_j_est_2022_104937 crossref_primary_10_1016_j_jpowsour_2020_228267 crossref_primary_10_1016_j_indcrop_2023_117378 crossref_primary_10_1038_srep41088 crossref_primary_10_1016_j_nanoen_2016_02_053 crossref_primary_10_1007_s10570_018_1811_6 crossref_primary_10_1016_j_progpolymsci_2018_06_004 crossref_primary_10_1002_advs_201700663 crossref_primary_10_1007_s12274_022_4374_7 crossref_primary_10_1016_j_electacta_2020_137409 crossref_primary_10_1002_adfm_202104991 crossref_primary_10_1016_j_electacta_2018_07_086 crossref_primary_10_1039_C6CS00041J crossref_primary_10_1002_app_48959 crossref_primary_10_3390_polym13020243 crossref_primary_10_1007_s11706_021_0549_5 crossref_primary_10_1088_1402_4896_ac45a8 crossref_primary_10_1002_adfm_202211454 crossref_primary_10_1016_j_jechem_2017_06_002 crossref_primary_10_1016_j_carbpol_2017_02_043 crossref_primary_10_1016_j_carbon_2019_04_029 crossref_primary_10_1016_j_jcis_2022_10_078 crossref_primary_10_3390_nano10010112 crossref_primary_10_1016_j_apsusc_2021_149910 crossref_primary_10_1002_mame_202100556 crossref_primary_10_1007_s11356_023_26135_w crossref_primary_10_1016_j_indcrop_2019_111642 crossref_primary_10_1007_s10570_020_03227_1 crossref_primary_10_1007_s42114_024_00979_3 crossref_primary_10_1016_j_matlet_2019_02_064 crossref_primary_10_1016_j_orgel_2021_106412 crossref_primary_10_1002_adma_202413292 crossref_primary_10_1038_s41528_020_0079_8 crossref_primary_10_1039_C8EE01879K crossref_primary_10_1016_j_carbon_2018_02_041 crossref_primary_10_1038_s41578_019_0127_y crossref_primary_10_1002_cplu_202300704 crossref_primary_10_1016_j_electacta_2017_08_034 crossref_primary_10_1002_pat_4074 crossref_primary_10_3390_nano9040612 crossref_primary_10_3390_ma12020273 crossref_primary_10_1002_advs_201600382 crossref_primary_10_1016_j_indcrop_2022_115457 crossref_primary_10_1007_s40820_017_0134_8 crossref_primary_10_1007_s40820_019_0343_4 crossref_primary_10_1177_1528083718804208 crossref_primary_10_1016_j_jpowsour_2019_227212 crossref_primary_10_1007_s10800_020_01423_2 crossref_primary_10_1016_j_cej_2016_09_115 crossref_primary_10_1016_j_nanoen_2017_04_040 crossref_primary_10_1007_s11705_023_2307_y crossref_primary_10_1088_1361_6463_ab3967 crossref_primary_10_1002_admt_202001180 crossref_primary_10_1039_D4SE00038B crossref_primary_10_1002_adfm_202302785 crossref_primary_10_1039_D1NR06937C crossref_primary_10_1002_adma_201600689 crossref_primary_10_1007_s10853_018_2131_9 crossref_primary_10_1016_j_cclet_2020_08_019 crossref_primary_10_3390_polym11010129 crossref_primary_10_1016_j_jorganchem_2019_120915 crossref_primary_10_1016_j_carbpol_2020_115829 crossref_primary_10_1016_j_matdes_2016_07_017 crossref_primary_10_1016_j_pecs_2017_10_005 crossref_primary_10_1016_j_ijhydene_2022_05_074 crossref_primary_10_1002_slct_202205042 crossref_primary_10_1016_j_cej_2021_128842 crossref_primary_10_1002_aelm_201800179 crossref_primary_10_1039_D0RA08064K crossref_primary_10_1016_j_cclet_2017_08_013 crossref_primary_10_1002_adfm_202304280 crossref_primary_10_1016_j_jechem_2020_08_060 crossref_primary_10_1002_adfm_201602103 crossref_primary_10_1016_j_est_2024_112878 crossref_primary_10_1016_j_synthmet_2021_116806 crossref_primary_10_1016_j_electacta_2021_139733 crossref_primary_10_1016_j_electacta_2018_02_118 crossref_primary_10_3390_polym15204140 crossref_primary_10_1002_adma_201701756 crossref_primary_10_1016_j_cej_2016_11_028 crossref_primary_10_1002_mame_202400129 crossref_primary_10_1007_s10570_017_1332_8 crossref_primary_10_1016_j_carbpol_2019_115368 crossref_primary_10_1016_j_cej_2018_09_054 crossref_primary_10_1038_s41598_019_38615_6 crossref_primary_10_1515_psr_2024_0081 crossref_primary_10_1002_adma_202101368 crossref_primary_10_1002_adma_202000892 crossref_primary_10_1177_08839115241279867 crossref_primary_10_1016_j_est_2021_103475 crossref_primary_10_1016_j_mtener_2018_05_008 crossref_primary_10_1007_s10854_020_03148_6 crossref_primary_10_1016_j_cej_2023_143312 crossref_primary_10_54392_nnxt2443 crossref_primary_10_1002_er_7144 crossref_primary_10_1007_s10118_020_2379_9 crossref_primary_10_1016_j_jhazmat_2019_121195 crossref_primary_10_1002_adma_201807286 crossref_primary_10_1016_j_jcis_2024_06_067 crossref_primary_10_1016_j_carbpol_2016_05_054 crossref_primary_10_1016_j_jpowsour_2018_07_061 crossref_primary_10_1007_s40843_017_9168_9 crossref_primary_10_1002_aenm_201700130 crossref_primary_10_1080_15583724_2021_2001004 crossref_primary_10_1016_j_electacta_2018_04_018 crossref_primary_10_1007_s10853_022_07491_3 crossref_primary_10_1007_s10118_017_1957_y crossref_primary_10_1016_j_jechem_2022_09_024 crossref_primary_10_1016_j_inoche_2024_113482 crossref_primary_10_1039_D1RA04920H crossref_primary_10_1016_j_carbpol_2025_124165 crossref_primary_10_1016_j_cclet_2019_01_009 crossref_primary_10_1016_j_electacta_2019_03_015 crossref_primary_10_1038_srep46519 crossref_primary_10_1007_s13204_020_01542_4 crossref_primary_10_1038_s41598_018_27460_8 crossref_primary_10_1016_j_nanoen_2022_107329 crossref_primary_10_1016_j_cej_2019_122700 crossref_primary_10_1002_slct_202000718 crossref_primary_10_1016_j_carbpol_2017_09_065 crossref_primary_10_1016_j_jallcom_2021_159157 crossref_primary_10_1007_s42114_021_00223_2 crossref_primary_10_1007_s42823_023_00548_6 crossref_primary_10_1002_adma_201502284 crossref_primary_10_1016_j_electacta_2016_02_015 crossref_primary_10_1016_j_jallcom_2025_181972 crossref_primary_10_1007_s12274_021_3783_3 crossref_primary_10_1016_j_electacta_2019_05_133 crossref_primary_10_1007_s41918_022_00151_9 crossref_primary_10_1007_s10008_016_3202_y crossref_primary_10_1039_D1QM01544C crossref_primary_10_1002_adfm_201707351 crossref_primary_10_1002_adma_201703044 crossref_primary_10_1016_j_nanoen_2017_04_001 crossref_primary_10_1016_j_indcrop_2025_120830 crossref_primary_10_1109_JSEN_2023_3234222 crossref_primary_10_1002_mame_202100652 crossref_primary_10_1016_j_est_2021_103218 crossref_primary_10_1016_j_jelechem_2016_05_001 crossref_primary_10_1039_C9QM00348G crossref_primary_10_1007_s10008_019_04491_3 crossref_primary_10_1007_s10800_020_01433_0 |
| Cites_doi | 10.1557/mrs.2013.59 10.1126/science.1241488 10.1016/j.electacta.2012.03.060 10.1002/adfm.201303282 10.1039/C4RA15894F 10.1002/aenm.201100713 10.1039/C3RA45553J 10.1021/nn1000035 10.1002/adma.201302788 10.1039/c2ee23977a 10.1126/science.1216744 10.1021/nn500150j 10.1016/j.electacta.2007.01.011 10.1126/science.1239089 10.1002/ange.201109142 10.1002/anie.201001273 10.1039/C4TA01094A 10.1016/j.jpowsour.2014.08.041 10.1002/adma.201004134 10.1021/nn500497k 10.1016/j.jpowsour.2013.07.080 10.1126/science.1249625 10.1039/C4NR07251K 10.1126/science.1184126 10.1002/adma.201303529 10.1016/j.nanoen.2013.09.002 10.1021/nn900297m 10.1016/j.jpowsour.2013.09.130 10.1039/c2jm33975g 10.1038/nature13970 10.1016/j.carbon.2013.11.034 10.1002/aenm.201300515 10.1039/C3RA47588C 10.1038/nnano.2010.162 10.1039/C5EE00142K 10.1039/C4TA03724C 10.1038/ncomms5554 10.1039/C4NR04642K 10.1002/adma.201404140 10.1039/C0EE00404A 10.1016/j.jpowsour.2010.06.084 10.1021/nl1019672 |
| ContentType | Journal Article |
| Copyright | Copyright © American Chemical Society |
| Copyright_xml | – notice: Copyright © American Chemical Society |
| DBID | AAYXX CITATION NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M ADTPV AOWAS DF2 |
| DOI | 10.1021/acsnano.5b02846 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace SwePub SwePub Articles SWEPUB Uppsala universitet |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 7571 |
| ExternalDocumentID | oai_DiVA_org_uu_261306 26083393 10_1021_acsnano_5b02846 c073994695 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M ADTPV AOWAS DF2 |
| ID | FETCH-LOGICAL-a403t-78f9052cb02ef6ad48145897ce82cd7c1a033e2875d163552547bc9c83c6058e3 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 218 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358823200094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Tue Nov 04 16:53:03 EST 2025 Fri Jul 11 09:23:40 EDT 2025 Thu Oct 02 10:21:37 EDT 2025 Mon Jul 21 05:49:48 EDT 2025 Sat Nov 29 02:49:48 EST 2025 Tue Nov 18 21:51:18 EST 2025 Thu Aug 27 13:42:37 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | porosity optimization energy storage devices capacitance conducting polymers modified nanocellulose |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a403t-78f9052cb02ef6ad48145897ce82cd7c1a033e2875d163552547bc9c83c6058e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 26083393 |
| PQID | 1700103010 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_261306 proquest_miscellaneous_1762065235 proquest_miscellaneous_1700103010 pubmed_primary_26083393 crossref_citationtrail_10_1021_acsnano_5b02846 crossref_primary_10_1021_acsnano_5b02846 acs_journals_10_1021_acsnano_5b02846 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-07-28 |
| PublicationDateYYYYMMDD | 2015-07-28 |
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2015 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | Meng Y. (ref21/cit21) 2013; 25 Wang Z. (ref37/cit37) 2014; 2 Simon P. (ref1/cit1) 2014; 343 El-Kady M. F. (ref42/cit42) 2012; 335 Chmiola J. (ref12/cit12) 2010; 328 Yoon Y. (ref8/cit8) 2014; 8 Hua K. (ref28/cit28) 2014; 4 Wu Q. (ref32/cit32) 2010; 4 Wang X. (ref35/cit35) 2014; 249 Nyholm L. (ref14/cit14) 2011; 23 Yuan L. (ref22/cit22) 2012; 124 Ghidiu M. (ref2/cit2) 2014; 516 Wang Z. (ref29/cit29) 2014; 6 Carlsson D. O. (ref30/cit30) 2014; 4 Yao B. (ref23/cit23) 2013; 2 Anothumakkool B. (ref26/cit26) 2015; 8 Pech D. (ref39/cit39) 2010; 5 Tammela P. (ref41/cit41) 2014; 272 Wang D.-W. (ref33/cit33) 2009; 3 Wang Z. (ref27/cit27) 2014; 2 Yang X. (ref3/cit3) 2013; 341 Zheng G. (ref25/cit25) 2013; 38 Burke A. (ref38/cit38) 2007; 53 Xu Y. (ref5/cit5) 2014; 5 Kunowsky M. (ref6/cit6) 2014; 68 Zhang X. (ref20/cit20) 2014; 246 Lukatskaya M. R. (ref4/cit4) 2013; 341 Razaq A. (ref34/cit34) 2012; 2 Yan J. (ref7/cit7) 2014; 8 Yuan L. (ref16/cit16) 2013; 6 Zhao M. Q. (ref10/cit10) 2015; 27 Heon M. (ref11/cit11) 2011; 4 Klemm D. (ref24/cit24) 2011; 50 Wang Z. (ref15/cit15) 2015; 7 Kim M. (ref18/cit18) 2014; 24 Tammela P. (ref40/cit40) 2015; 5 Snook G. A. (ref13/cit13) 2011; 196 Xiong G. (ref17/cit17) 2014; 4 Meng C. (ref19/cit19) 2010; 10 Carlsson D. O. (ref31/cit31) 2012; 22 Nyström G. (ref36/cit36) 2012; 70 Jung N. (ref9/cit9) 2013; 25 |
| References_xml | – volume: 38 start-page: 320 year: 2013 ident: ref25/cit25 publication-title: MRS Bull. doi: 10.1557/mrs.2013.59 – volume: 341 start-page: 1502 year: 2013 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.1241488 – volume: 70 start-page: 91 year: 2012 ident: ref36/cit36 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.060 – volume: 24 start-page: 2489 year: 2014 ident: ref18/cit18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303282 – volume: 5 start-page: 16405 year: 2015 ident: ref40/cit40 publication-title: RSC Adv. doi: 10.1039/C4RA15894F – volume: 2 start-page: 445 year: 2012 ident: ref34/cit34 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100713 – volume: 4 start-page: 2892 year: 2014 ident: ref28/cit28 publication-title: RSC Adv. doi: 10.1039/C3RA45553J – volume: 4 start-page: 1963 year: 2010 ident: ref32/cit32 publication-title: ACS Nano doi: 10.1021/nn1000035 – volume: 25 start-page: 6854 year: 2013 ident: ref9/cit9 publication-title: Adv. Mater. doi: 10.1002/adma.201302788 – volume: 6 start-page: 470 year: 2013 ident: ref16/cit16 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23977a – volume: 335 start-page: 1326 year: 2012 ident: ref42/cit42 publication-title: Science doi: 10.1126/science.1216744 – volume: 8 start-page: 4580 year: 2014 ident: ref8/cit8 publication-title: ACS Nano doi: 10.1021/nn500150j – volume: 53 start-page: 1083 year: 2007 ident: ref38/cit38 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.01.011 – volume: 341 start-page: 534 year: 2013 ident: ref3/cit3 publication-title: Science doi: 10.1126/science.1239089 – volume: 124 start-page: 5018 year: 2012 ident: ref22/cit22 publication-title: Angew. Chem. doi: 10.1002/ange.201109142 – volume: 50 start-page: 5438 year: 2011 ident: ref24/cit24 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201001273 – volume: 2 start-page: 7711 year: 2014 ident: ref37/cit37 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01094A – volume: 272 start-page: 468 year: 2014 ident: ref41/cit41 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.08.041 – volume: 23 start-page: 3751 year: 2011 ident: ref14/cit14 publication-title: Adv. Mater. doi: 10.1002/adma.201004134 – volume: 8 start-page: 4720 year: 2014 ident: ref7/cit7 publication-title: ACS Nano doi: 10.1021/nn500497k – volume: 246 start-page: 283 year: 2014 ident: ref20/cit20 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.07.080 – volume: 343 start-page: 1210 year: 2014 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.1249625 – volume: 7 start-page: 3418 year: 2015 ident: ref15/cit15 publication-title: Nanoscale doi: 10.1039/C4NR07251K – volume: 328 start-page: 480 year: 2010 ident: ref12/cit12 publication-title: Science doi: 10.1126/science.1184126 – volume: 25 start-page: 6985 year: 2013 ident: ref21/cit21 publication-title: Adv. Mater. doi: 10.1002/adma.201303529 – volume: 2 start-page: 1071 year: 2013 ident: ref23/cit23 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.09.002 – volume: 3 start-page: 1745 year: 2009 ident: ref33/cit33 publication-title: ACS Nano doi: 10.1021/nn900297m – volume: 249 start-page: 148 year: 2014 ident: ref35/cit35 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.130 – volume: 22 start-page: 19014 year: 2012 ident: ref31/cit31 publication-title: J. Mater. Chem. doi: 10.1039/c2jm33975g – volume: 516 start-page: 78 year: 2014 ident: ref2/cit2 publication-title: Nature doi: 10.1038/nature13970 – volume: 68 start-page: 553 year: 2014 ident: ref6/cit6 publication-title: Carbon doi: 10.1016/j.carbon.2013.11.034 – volume: 4 start-page: 1300515 year: 2014 ident: ref17/cit17 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300515 – volume: 4 start-page: 8489 year: 2014 ident: ref30/cit30 publication-title: RSC Adv. doi: 10.1039/C3RA47588C – volume: 5 start-page: 651 year: 2010 ident: ref39/cit39 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.162 – volume: 8 start-page: 1339 year: 2015 ident: ref26/cit26 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00142K – volume: 2 start-page: 16761 year: 2014 ident: ref27/cit27 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03724C – volume: 5 start-page: 4554 year: 2014 ident: ref5/cit5 publication-title: Nat. Commun. doi: 10.1038/ncomms5554 – volume: 6 start-page: 13068 year: 2014 ident: ref29/cit29 publication-title: Nanoscale doi: 10.1039/C4NR04642K – volume: 27 start-page: 339 year: 2015 ident: ref10/cit10 publication-title: Adv. Mater. doi: 10.1002/adma.201404140 – volume: 4 start-page: 135 year: 2011 ident: ref11/cit11 publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00404A – volume: 196 start-page: 1 year: 2011 ident: ref13/cit13 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.084 – volume: 10 start-page: 4025 year: 2010 ident: ref19/cit19 publication-title: Nano Lett. doi: 10.1021/nl1019672 |
| SSID | ssj0057876 |
| Score | 2.5774205 |
| Snippet | We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full... |
| SourceID | swepub proquest pubmed crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7563 |
| SubjectTerms | capacitance Conducting polymers Density Devices Electrodes energy storage devices Engineering Science with specialization in Nanotechnology and Functional Materials Fibers modified nanocellulose Nanostructure Polymerization porosity optimization Surface chemistry Teknisk fysik med inriktning mot nanoteknologi och funktionella material |
| Title | Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances |
| URI | http://dx.doi.org/10.1021/acsnano.5b02846 https://www.ncbi.nlm.nih.gov/pubmed/26083393 https://www.proquest.com/docview/1700103010 https://www.proquest.com/docview/1762065235 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-261306 |
| Volume | 9 |
| WOSCitedRecordID | wos000358823200094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Publications customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-086X databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RwoEeeEOXR2WkInFJu7GT2D4uS1ccoKq0UC2nyJk4YqUlqZINgn_PTJJdoFURHHKIYifOeOz55qHPAIeR14SDDQbojQoiMmmBU6gDxILptMhkdzHd8_f69NQsFvbsF1n05Qy-DI8dNqUrq6M4I1MYJTtwUxLI5eq9yXS-2XRZ75I-gUwOMqGILYvPlRewGcLmTzN0BVteIg7tjM3s7n8M8x7cGRClmPQqcB9u-PIB7P3GM_gQvs_bunDoxYcqXxYEOgVtqhXH7NtV1Xgx47KRRnzmajYxrUrmgKWO4qxa_fjq6-ANmbpczJg7M1t5MW8vfI1kZXHJZ_UIjuWKk_JLV0wgpv0DvmkewafZycfpu2A4ciFw0VitA20KO44l0k_4InF5ZMIoNlbTTErMNYZurJQnLyvOQ4Yq5F7qDC0ahZxf9eox7JZV6fdBuLEtbOiKTBUucnnmEhtrZ2VmorjQiR7BIcksHZZMk3bZcBmmgyDTQZAjONpMVIoDbTmfnrG6vsPrbYeLnrHj-qYvNzOf0qpisbvSVy0NRncHYND1tzaJJAAnVTyCJ73abD9IXqJRyqoRvOr1aPuE6bzfLs8nKSlP2rbUklBE8vTfhPEMbhNgizm2LM1z2F3XrX8Bt_DbetnUB7CjF-agWxc_AVr2CWI |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aA4nxMG4bdNyMNCReMpI4ju3HUlYN0VWTOqbxZDmOLSqVZEoaBP-e4yQtG9MQPOQhie04J8f-Pl_yHYD9xHLkwcIExgoaJAhpgaaGB8Y4L6eFkN3O6Z5N-HQqzs_lyQaEq39hsBI1llS3i_i_1QWid3it0EV5wDJExCS9BbcZgquPWTAczVZ9r3e_tFtHxnEykom1mM-1AjwamfoqGl2jmH_oh7aYM77__7V9ANs9vyTDziEewoYtHsG9S6qDj-HHrKmcNpYcl_ncIQUl2MWWfga_WZS1JWO_iaQmX_zeNjIqC68IixnJSbn4-c1WwXsEvpyMvZJmtrBk1lzYyiDmmrmP3EP8zC45LL62WwvIqLvhT-od-Dw-PB0dBX0AhkAnIV0GXDgZstjgS1iX6jwRUcKE5PhdY5NzE-mQUotjLpZHnrjgYJNnRhpBjV9ttXQXNouysE-B6FA6GWmXUacTnWc6lYxrGWciYY6nfAD7aDPVN6BatWvjcaR6Q6rekAM4WH0vZXoRcx9LY3FzhrfrDBedfsfNSV-vHEBhG_Nm14UtG6wMb8Nh4PG3NGmMdC6mbABPOu9ZPxDHjIJSSQfwpnOn9R0v7v1hfjZU6ECqaTAlcop079-M8QruHp0eT9Tk4_TTM9hCKsf8rHMsnsPmsmrsC7hjvi_ndfWybSS_AA1cEOA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7BghAceC5QnkZaJC5ZmjiJ7WPpbgRiqSoVVsvJchxbVCpJlTQI_j0zSVoBq0WIQw6J7cSZjPN9fn0DcBA7gTxY2sA6yYMYIS0w3IrAWk9yWgjZ3Zju6YmYzeTZmZoPm8JoLwxWosE7Nd0kPrXqdeEHhYHwNV4vTVkdJjmiYpxehisJwjnFLZhMF9v_L7lg2s8lY18ZCcVO0OfcDQiRbPM7Ip2jmX9oiHa4k936vxrfhpsDz2ST3jHuwCVX3oUbv6gP3oPvi7b2xjr2oSqWHqkow19tRSP57apqHMtoMUnDPtMaNzatSlKGxYJsXq1-fHV18AYBsGAZKWrmK8cW7drVFrHXLimCD6MRXnZcfumWGLBpn0AnzT58yo4_Tt8GQyCGwMRjvgmE9GqcRBZfwvnUFLEM40Qqgd83soWwoRlz7rDvlRQhERjsdIrcKiu5pVlXx-_DXlmV7iEwM1Zehcbn3JvYFLlJVSKMinIZJ16kYgQHaDM9NKRGd3PkUagHQ-rBkCM43H4zbQcxc4qpsbq4wKtdgXWv43Fx1hdbJ9DY1sjspnRVi5URXVgMPP6WJ42Q1kU8GcGD3oN2D8S-o-Rc8RG87F1ql0Ii30fL04lGJ9JtizmRW6SP_s0Yz-Ha_CjTJ-9m7x_DdWR0CQ0-R_IJ7G3q1j2Fq_bbZtnUz7p28hO0QhNa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Modified+Nanocellulose+Fibers+Yield+Conducting+Polymer-Based+Flexible+Supercapacitors+with+Enhanced+Capacitances&rft.jtitle=ACS+nano&rft.au=Wang%2C+Zhaohui&rft.au=Carlsson%2C+Daniel+O&rft.au=Tammela%2C+Petter&rft.au=Hua%2C+Kai&rft.date=2015-07-28&rft.eissn=1936-086X&rft.volume=9&rft.issue=7&rft.spage=7563&rft_id=info:doi/10.1021%2Facsnano.5b02846&rft_id=info%3Apmid%2F26083393&rft.externalDocID=26083393 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |