Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances

We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g–1) and volumetric (122 F cm–3) capacitances at high current densities (300 mA cm–2 ≈ 33 A g–1) until date...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano Vol. 9; no. 7; pp. 7563 - 7571
Main Authors: Wang, Zhaohui, Carlsson, Daniel O, Tammela, Petter, Hua, Kai, Zhang, Peng, Nyholm, Leif, Strømme, Maria
Format: Journal Article
Language:English
Published: United States American Chemical Society 28.07.2015
Subjects:
ISSN:1936-0851, 1936-086X, 1936-086X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g–1) and volumetric (122 F cm–3) capacitances at high current densities (300 mA cm–2 ≈ 33 A g–1) until date reported for conducting polymer-based electrodes with active mass loadings as high as 9 mg cm–2. By introducing quaternary amine groups on the surface of NCFs prior to polypyrrole (PPy) polymerization, the macropore volume of the formed PPy-NCF composites can be minimized while maintaining the volume of the micro- and mesopores at the same level as when unmodified or carboxylate groups functionalized NCFs are employed as polymerization substrates. Symmetric, aqueous electrolyte-based, devices comprising these porosity-optimized electrodes exhibit device-specific volumetric energy and power densities of 3.1 mWh cm–3 and 3 W cm–3 respectively; which are among the highest values reported for conducting polymer electrodes in aqueous electrolytes. The functionality of the devices is verified by powering a red light-emitting diode with the device in different mechanically challenging states.
AbstractList We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g(-1)) and volumetric (122 F cm(-3)) capacitances at high current densities (300 mA cm(-2) ≈ 33 A g(-1)) until date reported for conducting polymer-based electrodes with active mass loadings as high as 9 mg cm(-2). By introducing quaternary amine groups on the surface of NCFs prior to polypyrrole (PPy) polymerization, the macropore volume of the formed PPy-NCF composites can be minimized while maintaining the volume of the micro- and mesopores at the same level as when unmodified or carboxylate groups functionalized NCFs are employed as polymerization substrates. Symmetric, aqueous electrolyte-based, devices comprising these porosity-optimized electrodes exhibit device-specific volumetric energy and power densities of 3.1 mWh cm(-3) and 3 W cm(-3) respectively; which are among the highest values reported for conducting polymer electrodes in aqueous electrolytes. The functionality of the devices is verified by powering a red light-emitting diode with the device in different mechanically challenging states.
We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g super(-1)) and volumetric (122 F cm super(-3)) capacitances at high current densities (300 mA cm super(-2) approximately 33 A g super(-1)) until date reported for conducting polymer-based electrodes with active mass loadings as high as 9 mg cm super(-2). By introducing quaternary amine groups on the surface of NCFs prior to polypyrrole (PPy) polymerization, the macropore volume of the formed PPy-NCF composites can be minimized while maintaining the volume of the micro- and mesopores at the same level as when unmodified or carboxylate groups functionalized NCFs are employed as polymerization substrates. Symmetric, aqueous electrolyte-based, devices comprising these porosity-optimized electrodes exhibit device-specific volumetric energy and power densities of 3.1 mWh cm super(-3) and 3 W cm super(-3) respectively; which are among the highest values reported for conducting polymer electrodes in aqueous electrolytes. The functionality of the devices is verified by powering a red light-emitting diode with the device in different mechanically challenging states. Keywords: energy storage devices; conducting polymers; modified nanocellulose; porosity optimization; capacitance
We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g(-1)) and volumetric (122 F cm(-3)) capacitances at high current densities (300 mA cm(-2) approximate to 33 A g(-1)) until date reported for conducting polymer-based electrodes with active mass loadings as high as 9 mg cm(-2). By introducing quaternary amine groups on the surface of NCFs prior to polypyrrole (PPy) polymerization, the macropore volume of the formed PPy-NCF composites can be minimized while maintaining the volume of the micro- and mesopores at the same level as when unmodified or carboxylate groups functionalized NCFs are employed as polymerization substrates. Symmetric, aqueous electrolyte-based, devices comprising these porosity-optimized electrodes exhibit device-specific volumetric energy and power densities of 3.1 mWh cm(-3) and 3 W cm(-3) respectively; which are among the highest values reported for conducting polymer electrodes in aqueous electrolytes. The functionality of the devices is verified by powering a red light-emitting diode with the device in different mechanically challenging states.
Author Nyholm, Leif
Zhang, Peng
Strømme, Maria
Hua, Kai
Carlsson, Daniel O
Wang, Zhaohui
Tammela, Petter
AuthorAffiliation Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory
Uppsala University
Department of Chemistry-The Ångström Laboratory
AuthorAffiliation_xml – name: Uppsala University
– name: Department of Chemistry-The Ångström Laboratory
– name: Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory
Author_xml – sequence: 1
  givenname: Zhaohui
  surname: Wang
  fullname: Wang, Zhaohui
  email: zhaohui.wang@kemi.uu.se, leif.nyholm@kemi.uu.se, maria.stromme@angstrom.uu.se
– sequence: 2
  givenname: Daniel O
  surname: Carlsson
  fullname: Carlsson, Daniel O
– sequence: 3
  givenname: Petter
  surname: Tammela
  fullname: Tammela, Petter
– sequence: 4
  givenname: Kai
  surname: Hua
  fullname: Hua, Kai
– sequence: 5
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
– sequence: 6
  givenname: Leif
  surname: Nyholm
  fullname: Nyholm, Leif
  email: zhaohui.wang@kemi.uu.se, leif.nyholm@kemi.uu.se, maria.stromme@angstrom.uu.se
– sequence: 7
  givenname: Maria
  surname: Strømme
  fullname: Strømme, Maria
  email: zhaohui.wang@kemi.uu.se, leif.nyholm@kemi.uu.se, maria.stromme@angstrom.uu.se
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26083393$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-261306$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqNkUtv1DAUhS1URNuBNTuUJRKk9SN2nGUZOi1SeUgFBCvLcW5aVxk72LHa_nscZdoFUiUWlm3d7xzZ5xyiPecdIPSa4COCKTnWJjrt_BFvMZWVeIYOSMNEiaX4tfd45mQfHcZ4gzGvZS1eoH0qsGSsYQfo7jKFXhsoPvvO9ha64kv2MzAMafARio1tIcTit4WhK9bedclM1l0V3_xwv4VQftAxazYD3Nl2gOIyjRCMHrWxk8-6WztdF6fuWjuTsfUymC_xJXre6yHCq92-Qj82p9_X5-XF17NP65OLUleYTWUt-wZzavL_oBe6qySpuGxqA5KarjZEY8aAypp3RDDOKa_q1jRGMiMwl8BW6P3iG29hTK0ag93qcK-8tuqj_XmifLhSKSkqCMMi428XfAz-T4I4qa2NcxzagU9RkVpQLDhl_D9QjAlm81qhNzs0tVvoHh_x0EMG-AKY4GMM0Ks5p8l6NwVtB0WwmvtWu77Vru-sO_5H92D9tOLdosgDdeNTcDn9J-m_DFq-HA
CitedBy_id crossref_primary_10_1016_j_indcrop_2023_117093
crossref_primary_10_1002_adsu_201900050
crossref_primary_10_1021_acs_langmuir_5c01694
crossref_primary_10_1002_adma_201804826
crossref_primary_10_1016_j_biombioe_2024_107265
crossref_primary_10_1016_j_carbpol_2016_06_102
crossref_primary_10_1007_s10934_016_0352_3
crossref_primary_10_1016_j_carbpol_2016_12_050
crossref_primary_10_1007_s11581_020_03438_3
crossref_primary_10_1002_smll_201800280
crossref_primary_10_1016_j_ijbiomac_2023_129081
crossref_primary_10_1016_j_nanoen_2016_01_011
crossref_primary_10_1039_C7CS00790F
crossref_primary_10_1088_1402_4896_acf52f
crossref_primary_10_3390_molecules22122177
crossref_primary_10_1016_j_est_2022_104937
crossref_primary_10_1016_j_jpowsour_2020_228267
crossref_primary_10_1016_j_indcrop_2023_117378
crossref_primary_10_1038_srep41088
crossref_primary_10_1016_j_nanoen_2016_02_053
crossref_primary_10_1007_s10570_018_1811_6
crossref_primary_10_1016_j_progpolymsci_2018_06_004
crossref_primary_10_1002_advs_201700663
crossref_primary_10_1007_s12274_022_4374_7
crossref_primary_10_1016_j_electacta_2020_137409
crossref_primary_10_1002_adfm_202104991
crossref_primary_10_1016_j_electacta_2018_07_086
crossref_primary_10_1039_C6CS00041J
crossref_primary_10_1002_app_48959
crossref_primary_10_3390_polym13020243
crossref_primary_10_1007_s11706_021_0549_5
crossref_primary_10_1088_1402_4896_ac45a8
crossref_primary_10_1002_adfm_202211454
crossref_primary_10_1016_j_jechem_2017_06_002
crossref_primary_10_1016_j_carbpol_2017_02_043
crossref_primary_10_1016_j_carbon_2019_04_029
crossref_primary_10_1016_j_jcis_2022_10_078
crossref_primary_10_3390_nano10010112
crossref_primary_10_1016_j_apsusc_2021_149910
crossref_primary_10_1002_mame_202100556
crossref_primary_10_1007_s11356_023_26135_w
crossref_primary_10_1016_j_indcrop_2019_111642
crossref_primary_10_1007_s10570_020_03227_1
crossref_primary_10_1007_s42114_024_00979_3
crossref_primary_10_1016_j_matlet_2019_02_064
crossref_primary_10_1016_j_orgel_2021_106412
crossref_primary_10_1002_adma_202413292
crossref_primary_10_1038_s41528_020_0079_8
crossref_primary_10_1039_C8EE01879K
crossref_primary_10_1016_j_carbon_2018_02_041
crossref_primary_10_1038_s41578_019_0127_y
crossref_primary_10_1002_cplu_202300704
crossref_primary_10_1016_j_electacta_2017_08_034
crossref_primary_10_1002_pat_4074
crossref_primary_10_3390_nano9040612
crossref_primary_10_3390_ma12020273
crossref_primary_10_1002_advs_201600382
crossref_primary_10_1016_j_indcrop_2022_115457
crossref_primary_10_1007_s40820_017_0134_8
crossref_primary_10_1007_s40820_019_0343_4
crossref_primary_10_1177_1528083718804208
crossref_primary_10_1016_j_jpowsour_2019_227212
crossref_primary_10_1007_s10800_020_01423_2
crossref_primary_10_1016_j_cej_2016_09_115
crossref_primary_10_1016_j_nanoen_2017_04_040
crossref_primary_10_1007_s11705_023_2307_y
crossref_primary_10_1088_1361_6463_ab3967
crossref_primary_10_1002_admt_202001180
crossref_primary_10_1039_D4SE00038B
crossref_primary_10_1002_adfm_202302785
crossref_primary_10_1039_D1NR06937C
crossref_primary_10_1002_adma_201600689
crossref_primary_10_1007_s10853_018_2131_9
crossref_primary_10_1016_j_cclet_2020_08_019
crossref_primary_10_3390_polym11010129
crossref_primary_10_1016_j_jorganchem_2019_120915
crossref_primary_10_1016_j_carbpol_2020_115829
crossref_primary_10_1016_j_matdes_2016_07_017
crossref_primary_10_1016_j_pecs_2017_10_005
crossref_primary_10_1016_j_ijhydene_2022_05_074
crossref_primary_10_1002_slct_202205042
crossref_primary_10_1016_j_cej_2021_128842
crossref_primary_10_1002_aelm_201800179
crossref_primary_10_1039_D0RA08064K
crossref_primary_10_1016_j_cclet_2017_08_013
crossref_primary_10_1002_adfm_202304280
crossref_primary_10_1016_j_jechem_2020_08_060
crossref_primary_10_1002_adfm_201602103
crossref_primary_10_1016_j_est_2024_112878
crossref_primary_10_1016_j_synthmet_2021_116806
crossref_primary_10_1016_j_electacta_2021_139733
crossref_primary_10_1016_j_electacta_2018_02_118
crossref_primary_10_3390_polym15204140
crossref_primary_10_1002_adma_201701756
crossref_primary_10_1016_j_cej_2016_11_028
crossref_primary_10_1002_mame_202400129
crossref_primary_10_1007_s10570_017_1332_8
crossref_primary_10_1016_j_carbpol_2019_115368
crossref_primary_10_1016_j_cej_2018_09_054
crossref_primary_10_1038_s41598_019_38615_6
crossref_primary_10_1515_psr_2024_0081
crossref_primary_10_1002_adma_202101368
crossref_primary_10_1002_adma_202000892
crossref_primary_10_1177_08839115241279867
crossref_primary_10_1016_j_est_2021_103475
crossref_primary_10_1016_j_mtener_2018_05_008
crossref_primary_10_1007_s10854_020_03148_6
crossref_primary_10_1016_j_cej_2023_143312
crossref_primary_10_54392_nnxt2443
crossref_primary_10_1002_er_7144
crossref_primary_10_1007_s10118_020_2379_9
crossref_primary_10_1016_j_jhazmat_2019_121195
crossref_primary_10_1002_adma_201807286
crossref_primary_10_1016_j_jcis_2024_06_067
crossref_primary_10_1016_j_carbpol_2016_05_054
crossref_primary_10_1016_j_jpowsour_2018_07_061
crossref_primary_10_1007_s40843_017_9168_9
crossref_primary_10_1002_aenm_201700130
crossref_primary_10_1080_15583724_2021_2001004
crossref_primary_10_1016_j_electacta_2018_04_018
crossref_primary_10_1007_s10853_022_07491_3
crossref_primary_10_1007_s10118_017_1957_y
crossref_primary_10_1016_j_jechem_2022_09_024
crossref_primary_10_1016_j_inoche_2024_113482
crossref_primary_10_1039_D1RA04920H
crossref_primary_10_1016_j_carbpol_2025_124165
crossref_primary_10_1016_j_cclet_2019_01_009
crossref_primary_10_1016_j_electacta_2019_03_015
crossref_primary_10_1038_srep46519
crossref_primary_10_1007_s13204_020_01542_4
crossref_primary_10_1038_s41598_018_27460_8
crossref_primary_10_1016_j_nanoen_2022_107329
crossref_primary_10_1016_j_cej_2019_122700
crossref_primary_10_1002_slct_202000718
crossref_primary_10_1016_j_carbpol_2017_09_065
crossref_primary_10_1016_j_jallcom_2021_159157
crossref_primary_10_1007_s42114_021_00223_2
crossref_primary_10_1007_s42823_023_00548_6
crossref_primary_10_1002_adma_201502284
crossref_primary_10_1016_j_electacta_2016_02_015
crossref_primary_10_1016_j_jallcom_2025_181972
crossref_primary_10_1007_s12274_021_3783_3
crossref_primary_10_1016_j_electacta_2019_05_133
crossref_primary_10_1007_s41918_022_00151_9
crossref_primary_10_1007_s10008_016_3202_y
crossref_primary_10_1039_D1QM01544C
crossref_primary_10_1002_adfm_201707351
crossref_primary_10_1002_adma_201703044
crossref_primary_10_1016_j_nanoen_2017_04_001
crossref_primary_10_1016_j_indcrop_2025_120830
crossref_primary_10_1109_JSEN_2023_3234222
crossref_primary_10_1002_mame_202100652
crossref_primary_10_1016_j_est_2021_103218
crossref_primary_10_1016_j_jelechem_2016_05_001
crossref_primary_10_1039_C9QM00348G
crossref_primary_10_1007_s10008_019_04491_3
crossref_primary_10_1007_s10800_020_01433_0
Cites_doi 10.1557/mrs.2013.59
10.1126/science.1241488
10.1016/j.electacta.2012.03.060
10.1002/adfm.201303282
10.1039/C4RA15894F
10.1002/aenm.201100713
10.1039/C3RA45553J
10.1021/nn1000035
10.1002/adma.201302788
10.1039/c2ee23977a
10.1126/science.1216744
10.1021/nn500150j
10.1016/j.electacta.2007.01.011
10.1126/science.1239089
10.1002/ange.201109142
10.1002/anie.201001273
10.1039/C4TA01094A
10.1016/j.jpowsour.2014.08.041
10.1002/adma.201004134
10.1021/nn500497k
10.1016/j.jpowsour.2013.07.080
10.1126/science.1249625
10.1039/C4NR07251K
10.1126/science.1184126
10.1002/adma.201303529
10.1016/j.nanoen.2013.09.002
10.1021/nn900297m
10.1016/j.jpowsour.2013.09.130
10.1039/c2jm33975g
10.1038/nature13970
10.1016/j.carbon.2013.11.034
10.1002/aenm.201300515
10.1039/C3RA47588C
10.1038/nnano.2010.162
10.1039/C5EE00142K
10.1039/C4TA03724C
10.1038/ncomms5554
10.1039/C4NR04642K
10.1002/adma.201404140
10.1039/C0EE00404A
10.1016/j.jpowsour.2010.06.084
10.1021/nl1019672
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ADTPV
AOWAS
DF2
DOI 10.1021/acsnano.5b02846
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 7571
ExternalDocumentID oai_DiVA_org_uu_261306
26083393
10_1021_acsnano_5b02846
c073994695
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-a403t-78f9052cb02ef6ad48145897ce82cd7c1a033e2875d163552547bc9c83c6058e3
IEDL.DBID ACS
ISICitedReferencesCount 218
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358823200094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-0851
1936-086X
IngestDate Tue Nov 04 16:53:03 EST 2025
Fri Jul 11 09:23:40 EDT 2025
Thu Oct 02 10:21:37 EDT 2025
Mon Jul 21 05:49:48 EDT 2025
Sat Nov 29 02:49:48 EST 2025
Tue Nov 18 21:51:18 EST 2025
Thu Aug 27 13:42:37 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords porosity optimization
energy storage devices
capacitance
conducting polymers
modified nanocellulose
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a403t-78f9052cb02ef6ad48145897ce82cd7c1a033e2875d163552547bc9c83c6058e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26083393
PQID 1700103010
PQPubID 23479
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_uu_261306
proquest_miscellaneous_1762065235
proquest_miscellaneous_1700103010
pubmed_primary_26083393
crossref_citationtrail_10_1021_acsnano_5b02846
crossref_primary_10_1021_acsnano_5b02846
acs_journals_10_1021_acsnano_5b02846
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2015-07-28
PublicationDateYYYYMMDD 2015-07-28
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Meng Y. (ref21/cit21) 2013; 25
Wang Z. (ref37/cit37) 2014; 2
Simon P. (ref1/cit1) 2014; 343
El-Kady M. F. (ref42/cit42) 2012; 335
Chmiola J. (ref12/cit12) 2010; 328
Yoon Y. (ref8/cit8) 2014; 8
Hua K. (ref28/cit28) 2014; 4
Wu Q. (ref32/cit32) 2010; 4
Wang X. (ref35/cit35) 2014; 249
Nyholm L. (ref14/cit14) 2011; 23
Yuan L. (ref22/cit22) 2012; 124
Ghidiu M. (ref2/cit2) 2014; 516
Wang Z. (ref29/cit29) 2014; 6
Carlsson D. O. (ref30/cit30) 2014; 4
Yao B. (ref23/cit23) 2013; 2
Anothumakkool B. (ref26/cit26) 2015; 8
Pech D. (ref39/cit39) 2010; 5
Tammela P. (ref41/cit41) 2014; 272
Wang D.-W. (ref33/cit33) 2009; 3
Wang Z. (ref27/cit27) 2014; 2
Yang X. (ref3/cit3) 2013; 341
Zheng G. (ref25/cit25) 2013; 38
Burke A. (ref38/cit38) 2007; 53
Xu Y. (ref5/cit5) 2014; 5
Kunowsky M. (ref6/cit6) 2014; 68
Zhang X. (ref20/cit20) 2014; 246
Lukatskaya M. R. (ref4/cit4) 2013; 341
Razaq A. (ref34/cit34) 2012; 2
Yan J. (ref7/cit7) 2014; 8
Yuan L. (ref16/cit16) 2013; 6
Zhao M. Q. (ref10/cit10) 2015; 27
Heon M. (ref11/cit11) 2011; 4
Klemm D. (ref24/cit24) 2011; 50
Wang Z. (ref15/cit15) 2015; 7
Kim M. (ref18/cit18) 2014; 24
Tammela P. (ref40/cit40) 2015; 5
Snook G. A. (ref13/cit13) 2011; 196
Xiong G. (ref17/cit17) 2014; 4
Meng C. (ref19/cit19) 2010; 10
Carlsson D. O. (ref31/cit31) 2012; 22
Nyström G. (ref36/cit36) 2012; 70
Jung N. (ref9/cit9) 2013; 25
References_xml – volume: 38
  start-page: 320
  year: 2013
  ident: ref25/cit25
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2013.59
– volume: 341
  start-page: 1502
  year: 2013
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.1241488
– volume: 70
  start-page: 91
  year: 2012
  ident: ref36/cit36
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.03.060
– volume: 24
  start-page: 2489
  year: 2014
  ident: ref18/cit18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303282
– volume: 5
  start-page: 16405
  year: 2015
  ident: ref40/cit40
  publication-title: RSC Adv.
  doi: 10.1039/C4RA15894F
– volume: 2
  start-page: 445
  year: 2012
  ident: ref34/cit34
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100713
– volume: 4
  start-page: 2892
  year: 2014
  ident: ref28/cit28
  publication-title: RSC Adv.
  doi: 10.1039/C3RA45553J
– volume: 4
  start-page: 1963
  year: 2010
  ident: ref32/cit32
  publication-title: ACS Nano
  doi: 10.1021/nn1000035
– volume: 25
  start-page: 6854
  year: 2013
  ident: ref9/cit9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302788
– volume: 6
  start-page: 470
  year: 2013
  ident: ref16/cit16
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23977a
– volume: 335
  start-page: 1326
  year: 2012
  ident: ref42/cit42
  publication-title: Science
  doi: 10.1126/science.1216744
– volume: 8
  start-page: 4580
  year: 2014
  ident: ref8/cit8
  publication-title: ACS Nano
  doi: 10.1021/nn500150j
– volume: 53
  start-page: 1083
  year: 2007
  ident: ref38/cit38
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.01.011
– volume: 341
  start-page: 534
  year: 2013
  ident: ref3/cit3
  publication-title: Science
  doi: 10.1126/science.1239089
– volume: 124
  start-page: 5018
  year: 2012
  ident: ref22/cit22
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201109142
– volume: 50
  start-page: 5438
  year: 2011
  ident: ref24/cit24
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201001273
– volume: 2
  start-page: 7711
  year: 2014
  ident: ref37/cit37
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01094A
– volume: 272
  start-page: 468
  year: 2014
  ident: ref41/cit41
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.08.041
– volume: 23
  start-page: 3751
  year: 2011
  ident: ref14/cit14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004134
– volume: 8
  start-page: 4720
  year: 2014
  ident: ref7/cit7
  publication-title: ACS Nano
  doi: 10.1021/nn500497k
– volume: 246
  start-page: 283
  year: 2014
  ident: ref20/cit20
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.07.080
– volume: 343
  start-page: 1210
  year: 2014
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1249625
– volume: 7
  start-page: 3418
  year: 2015
  ident: ref15/cit15
  publication-title: Nanoscale
  doi: 10.1039/C4NR07251K
– volume: 328
  start-page: 480
  year: 2010
  ident: ref12/cit12
  publication-title: Science
  doi: 10.1126/science.1184126
– volume: 25
  start-page: 6985
  year: 2013
  ident: ref21/cit21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303529
– volume: 2
  start-page: 1071
  year: 2013
  ident: ref23/cit23
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.09.002
– volume: 3
  start-page: 1745
  year: 2009
  ident: ref33/cit33
  publication-title: ACS Nano
  doi: 10.1021/nn900297m
– volume: 249
  start-page: 148
  year: 2014
  ident: ref35/cit35
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.130
– volume: 22
  start-page: 19014
  year: 2012
  ident: ref31/cit31
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm33975g
– volume: 516
  start-page: 78
  year: 2014
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/nature13970
– volume: 68
  start-page: 553
  year: 2014
  ident: ref6/cit6
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.11.034
– volume: 4
  start-page: 1300515
  year: 2014
  ident: ref17/cit17
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300515
– volume: 4
  start-page: 8489
  year: 2014
  ident: ref30/cit30
  publication-title: RSC Adv.
  doi: 10.1039/C3RA47588C
– volume: 5
  start-page: 651
  year: 2010
  ident: ref39/cit39
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.162
– volume: 8
  start-page: 1339
  year: 2015
  ident: ref26/cit26
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00142K
– volume: 2
  start-page: 16761
  year: 2014
  ident: ref27/cit27
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03724C
– volume: 5
  start-page: 4554
  year: 2014
  ident: ref5/cit5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5554
– volume: 6
  start-page: 13068
  year: 2014
  ident: ref29/cit29
  publication-title: Nanoscale
  doi: 10.1039/C4NR04642K
– volume: 27
  start-page: 339
  year: 2015
  ident: ref10/cit10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404140
– volume: 4
  start-page: 135
  year: 2011
  ident: ref11/cit11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00404A
– volume: 196
  start-page: 1
  year: 2011
  ident: ref13/cit13
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.084
– volume: 10
  start-page: 4025
  year: 2010
  ident: ref19/cit19
  publication-title: Nano Lett.
  doi: 10.1021/nl1019672
SSID ssj0057876
Score 2.5774808
Snippet We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full...
SourceID swepub
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7563
SubjectTerms capacitance
Conducting polymers
Density
Devices
Electrodes
energy storage devices
Engineering Science with specialization in Nanotechnology and Functional Materials
Fibers
modified nanocellulose
Nanostructure
Polymerization
porosity optimization
Surface chemistry
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Title Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances
URI http://dx.doi.org/10.1021/acsnano.5b02846
https://www.ncbi.nlm.nih.gov/pubmed/26083393
https://www.proquest.com/docview/1700103010
https://www.proquest.com/docview/1762065235
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-261306
Volume 9
WOSCitedRecordID wos000358823200094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-086X
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71wQEOQMtreVSuVCQuKYmdh3Nclq56gKrSFrScImdii5WWpEo2CP49M0l2gVZF9JBDlHHijMf-PtujzwBHhDloCeY8dD56obHG04VyXiodahUicfJOZ_ZDcnam5_P0_LdY9NUdfBm8NdiUpqyOo5ygMIy3YVcSyeXsvfFkth50Oe7ifgOZJsjEIjYqPtdewDCEzd8wdI1bXhEO7cBm-uAW1XwI9wdGKcZ9COzBli334d4fOoOP4MesrZ1BKz5WxcIR6RQ0qFa8Zt8uq8aKKaeNNOILZ7OJSVWyBiwVFOfV8uc3W3vvCOoKMWXtzHxpxay9tDUSyuKCz-oRvJYrTsqvXTKBmPQP-KZ5DJ-mJxeTU284csEzoa9WXqJd6kcS6Sesi00R6iCMdJqg1RKLBAPjK2VplhUVAVMVml4mOabUrMj7q1Y9gZ2yKu0zEChjowstbYAuJBqVFwSYkcvJ1g8xT0ZwRD7Lhi7TZN1uuAyywZHZ4MgRHK8bKsNBtpxPz1jeXODNpsBlr9hxs-nhuuUz6lXsdlPaqqXKJN0BGHT9yyaWROCkikbwtA-bzQdplqiVStUIXvdxtHnCct7vF5_HGQVP1rZkSSwifv5_zngBd4mwRby2LPVL2FnVrX0Fd_D7atHUB7CdzPVB1y9-AXaACdc
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VUgk4AOW50IKRisQlJbHzcI7L0lUrtqtKW1A5Wc7EFistSZVsEPx7xkl2S6mK6CGHJLbjTMb-Pj_yDcAeYQ4agjkPrY9eqI32ZC6sl3KLUoRInLzVmZ0k06k8O0tPNsBf_QtDlaippLpdxL9QFwje07VCF-V-lBEihvEtuB0RuLqYBcPRbNX3OveLu3VkGicTmViL-VwpwKER1pfR6ArF_Es_tMWc8YOb1_Yh3O_5JRt2DrENG6Z4BPf-UB18DD9nTWU1GnZc5nNLFJRRF1u6GfxmUdaGjd0mkpp9dXvb2KgsnCIsZWQn5eLXd1N5Hwj4cjZ2SprZwrBZc24qJMzFuYvcw9zMLjsovrVbC9iou-FO6ifweXxwOjr0-gAMng59sfQSaVM_4kgvYWys81AGYSTTBI3kmCcYaF8IQ2OuKA8ccaHBZpJhSh8Z3WqrEU9hsygL8xwY8ljLXHIToA2JVGU5wWdkM0rrh5glA9gjm6m-AdWqXRvngeoNqXpDDmB_9b0U9iLmLpbG4voM79YZzjv9juuTvlk5gKI25syuC1M2VJmkDYdBx7_SxJzoHBfRAJ513rN-II0ZpRCpGMDbzp3Wd5y498f5l6EiB1JNQymJU8Qv_s8Yr-HO4enxRE2Opp9ewl2icpGbdeZyBzaXVWN2YQt_LOd19aptJL8BNewRVQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagINQeeBeWp5GKxCUlifNwjsu2EYiyWmkBlZPljG11pW2ySjYV_HtmkuwKqIoQhxwS24kzGef7_PqGsQPEHLAIcx44H7xIW-1JI5yXhQ6kiAA5eacze5JOp_L0NJsNm8JoLwxWosE7Nd0kPrXqlXGDwkDwFq-XuqwO4wJRMUqusxsxwjnFLRhP5pv_L7lg0s8lY18ZCcVW0OfSDQiRoPkdkS7RzD80RDvcye_8X43vstsDz-Tj3jHusWu2vM_2flEffMC-z9vaabD8U2UWDqkox19tRSP57bJqLM9pMUnDv9EaNz6pSlKGxYJ8Vi1_nNvae4cAaHhOiprF0vJ5u7I1IPbCgiL4cBrh5cflWbfEgE_6BDppHrIv-fHnyXtvCMTg6cgXay-VLvPjEPAlrEu0iWQQxTJLwcoQTAqB9oWw2PeKTUAEBjudaQEZfmygWVcr9tlOWZX2MeMQJloaGdoAXITkqjAIo7ErMK8fQZGO2AHaTA0NqVHdHHkYqMGQajDkiB1uvpmCQcycYmosry7wZltg1et4XJ311cYJFLY1MrsubdViZdIuLAYef8uThEjrQhGP2KPeg7YPxL6jFCITI_a6d6ltCol8Hy2-jhU6kWpbzIncInnyb8Z4yW7NjnJ18mH68SnbRUYX0-BzKJ-xnXXd2ufsJlysF039omsnPwHiPRPP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Modified+Nanocellulose+Fibers+Yield+Conducting+Polymer-Based+Flexible+Supercapacitors+with+Enhanced+Capacitances&rft.jtitle=ACS+nano&rft.au=Wang%2C+Zhaohui&rft.au=Carlsson%2C+Daniel+O.&rft.au=Tammela%2C+Petter&rft.au=Hua%2C+Kai&rft.date=2015-07-28&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=9&rft.issue=7&rft.spage=7563&rft.epage=7571&rft_id=info:doi/10.1021%2Facsnano.5b02846&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_5b02846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon