Kernel functions, analytic torsion and moduli spaces

This work investigates analytic torsion on the moduli space of degree zero stable bundles on a compact Reimann surface. Zeta-function regularization and perturbation-curvature formulas for torsion are developed using a modified resolvent-Szego kernel. The author discusses the bosonization formulas o...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Fay, John D. (John David)
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, R.I American Mathematical Society 1992
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:9780821825501, 082182550X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work investigates analytic torsion on the moduli space of degree zero stable bundles on a compact Reimann surface. Zeta-function regularization and perturbation-curvature formulas for torsion are developed using a modified resolvent-Szego kernel. The author discusses the bosonization formulas of mathematical physics. Riemann vanishing theorems for torsion, and analytic properties (insertion-residue formulas and heat equations) for the nonabelian theta function and Szego kernel. In addition, he provides background material on bundle-moduli spaces, Quillen metrics, and theta functions.
Bibliografie:"March 1992, volume 96, number 464 (second of 4 numbers)" -- T.p
Includes bibliographical references (p. 121-123) and index
ISBN:9780821825501
082182550X