Kernel functions, analytic torsion and moduli spaces

This work investigates analytic torsion on the moduli space of degree zero stable bundles on a compact Reimann surface. Zeta-function regularization and perturbation-curvature formulas for torsion are developed using a modified resolvent-Szego kernel. The author discusses the bosonization formulas o...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Fay, John D. (John David)
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: Providence, R.I American Mathematical Society 1992
Vydanie:1
Edícia:Memoirs of the American Mathematical Society
Predmet:
ISBN:9780821825501, 082182550X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This work investigates analytic torsion on the moduli space of degree zero stable bundles on a compact Reimann surface. Zeta-function regularization and perturbation-curvature formulas for torsion are developed using a modified resolvent-Szego kernel. The author discusses the bosonization formulas of mathematical physics. Riemann vanishing theorems for torsion, and analytic properties (insertion-residue formulas and heat equations) for the nonabelian theta function and Szego kernel. In addition, he provides background material on bundle-moduli spaces, Quillen metrics, and theta functions.
Bibliografia:"March 1992, volume 96, number 464 (second of 4 numbers)" -- T.p
Includes bibliographical references (p. 121-123) and index
ISBN:9780821825501
082182550X