Kernel functions, analytic torsion and moduli spaces
This work investigates analytic torsion on the moduli space of degree zero stable bundles on a compact Reimann surface. Zeta-function regularization and perturbation-curvature formulas for torsion are developed using a modified resolvent-Szego kernel. The author discusses the bosonization formulas o...
Saved in:
| Main Author: | |
|---|---|
| Format: | eBook Book |
| Language: | English |
| Published: |
Providence, R.I
American Mathematical Society
1992
|
| Edition: | 1 |
| Series: | Memoirs of the American Mathematical Society |
| Subjects: | |
| ISBN: | 9780821825501, 082182550X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Table of Contents:
- Intro -- Table of Contents -- Introduction -- 1. Theta Functions -- Determinants and the Mumford form -- Arakelov-Faltings metrics -- 2. Kernel Functions and Analytic Torsion -- Szegö kernel for a hermitian bundle -- Resolvent kernel -- determinant of the laplacian -- 3. Variational Formulas -- Perturbation of resolvent and kernel functions -- Perturbation of torsion -- curvature formulas -- 4. Torsion on the Moduli Space of Stable Bundles -- Complex structure on the moduli space -- Torsion and non-abelian theta-functions -- 5. Torsion on Teichmuller Space -- Heat equations -- Insertion theorems -- Notational Index -- References

