Kernel functions, analytic torsion and moduli spaces
This work investigates analytic torsion on the moduli space of degree zero stable bundles on a compact Reimann surface. Zeta-function regularization and perturbation-curvature formulas for torsion are developed using a modified resolvent-Szego kernel. The author discusses the bosonization formulas o...
Uloženo v:
| Hlavní autor: | |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence, R.I
American Mathematical Society
1992
|
| Vydání: | 1 |
| Edice: | Memoirs of the American Mathematical Society |
| Témata: | |
| ISBN: | 9780821825501, 082182550X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Intro -- Table of Contents -- Introduction -- 1. Theta Functions -- Determinants and the Mumford form -- Arakelov-Faltings metrics -- 2. Kernel Functions and Analytic Torsion -- Szegö kernel for a hermitian bundle -- Resolvent kernel -- determinant of the laplacian -- 3. Variational Formulas -- Perturbation of resolvent and kernel functions -- Perturbation of torsion -- curvature formulas -- 4. Torsion on the Moduli Space of Stable Bundles -- Complex structure on the moduli space -- Torsion and non-abelian theta-functions -- 5. Torsion on Teichmuller Space -- Heat equations -- Insertion theorems -- Notational Index -- References

