Direct Observation of Luminescent Silver Clusters Confined in Faujasite Zeolites

One of the ultimate goals in the study of metal clusters is the correlation between the atomic-scale organization and their physicochemical properties. However, direct observation of the atomic organization of such minuscule metal clusters is heavily hindered by radiation damage imposed by the diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano Jg. 10; H. 8; S. 7604 - 7611
Hauptverfasser: Altantzis, Thomas, Coutino-Gonzalez, Eduardo, Baekelant, Wouter, Martinez, Gerardo T, Abakumov, Artem M, Tendeloo, Gustaaf Van, Roeffaers, Maarten B. J, Bals, Sara, Hofkens, Johan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Chemical Society 23.08.2016
Schlagworte:
ISSN:1936-0851, 1936-086X, 1936-086X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the ultimate goals in the study of metal clusters is the correlation between the atomic-scale organization and their physicochemical properties. However, direct observation of the atomic organization of such minuscule metal clusters is heavily hindered by radiation damage imposed by the different characterization techniques. We present direct evidence of the structural arrangement, at an atomic level, of luminescent silver species stabilized in faujasite (FAU) zeolites using aberration-corrected scanning transmission electron microscopy. Two different silver clusters were identified in Ag-FAU zeolites, a trinuclear silver species associated with green emission and a tetranuclear silver species related to yellow emission. By combining direct imaging with complementary information obtained from X-ray powder diffraction and Rietveld analysis, we were able to elucidate the main differences at an atomic scale between luminescent (heat-treated) and nonluminescent (cation-exchanged) Ag-FAU zeolites. It is expected that such insights will trigger the directed synthesis of functional metal nanocluster–zeolite composites with tailored luminescent properties.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
1936-086X
DOI:10.1021/acsnano.6b02834