Biomembrane-Modified Field Effect Transistors for Sensitive and Quantitative Detection of Biological Toxins and Pathogens

The efforts of detecting bioactive targets with complex, dynamic, and unknown molecular profiles have inspired the development of various biosensor platforms. Herein, we report a cell-membrane-modified field effect transistor (FET) as a function-based nanosensor for the detection and quantitative me...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:ACS nano Ročník 13; číslo 3; s. 3714 - 3722
Hlavní autori: Gong, Hua, Chen, Fang, Huang, Zhenlong, Gu, Yue, Zhang, Qiangzhe, Chen, Yijie, Zhang, Yue, Zhuang, Jia, Cho, Yoon-Kyoung, Fang, Ronnie H, Gao, Weiwei, Xu, Sheng, Zhang, Liangfang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Chemical Society 26.03.2019
Predmet:
ISSN:1936-0851, 1936-086X, 1936-086X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The efforts of detecting bioactive targets with complex, dynamic, and unknown molecular profiles have inspired the development of various biosensor platforms. Herein, we report a cell-membrane-modified field effect transistor (FET) as a function-based nanosensor for the detection and quantitative measurement of numerous toxins and biological samples. By coating carbon nanotube FETs with natural red blood cell membranes, the resulting biomimetic nanosensor can selectively interact with and absorb broad-spectrum hemolytic toxins regardless of their molecular structures. Toxin–biomembrane interactions alter the local charge distribution at the FET surface in an ultrasensitive and concentration-dependent manner, resulting in a detection limit down to the femtomolar (fM) range. Accurate and quantitative measurements are enabled via a built-in calibration mechanism of the sensor, which overcomes batch-to-batch fabrication variations, and are demonstrated using three distinct toxins and various complex bacterial supernatants. The measured signals of bacterium-secreted proteins correlate linearly with the actual bacterial numbers, making the biosensor a nontraditional approach to rapidly detecting bacterial concentrations without a need to count bacterial colonies.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
1936-086X
DOI:10.1021/acsnano.9b00911