Fast algorithms for nonuniform Chirp-Fourier transform

The Chirp-Fourier transform is one of the most important tools of the modern signal processing. It has been widely used in the fields of ultrasound imaging, parameter estimation, and so on. The key to its application lies in the sampling and fast algorithms. In practical applications, nonuniform sam...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 9; číslo 7; s. 18968 - 18983
Hlavní autoři: Sun, Yannan, Qian, Wenchao
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2024
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Chirp-Fourier transform is one of the most important tools of the modern signal processing. It has been widely used in the fields of ultrasound imaging, parameter estimation, and so on. The key to its application lies in the sampling and fast algorithms. In practical applications, nonuniform sampling can be caused by sampling equipment and other reasons. For the nonuniform sampling, we utilized function approximation and interpolation theory to construct different approximation forms of Chirp-Fourier transform kernel function, and proposed three fast nonuniform Chirp-Fourier transform algorithms. By analyzing the approximation error and the computational complexity of these algorithms, the effectiveness of the proposed algorithms was proved.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2024923