Recognition of geochemical anomalies using a deep autoencoder network

In this paper, we train an autoencoder network to encode and reconstruct a geochemical sample population with unknown complex multivariate probability distributions. During the training, small probability samples contribute little to the autoencoder network. These samples can be recognized by the tr...

Full description

Saved in:
Bibliographic Details
Published in:Computers & geosciences Vol. 86; pp. 75 - 82
Main Authors: Xiong, Yihui, Zuo, Renguang
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.01.2016
Subjects:
ISSN:0098-3004, 1873-7803
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we train an autoencoder network to encode and reconstruct a geochemical sample population with unknown complex multivariate probability distributions. During the training, small probability samples contribute little to the autoencoder network. These samples can be recognized by the trained model as anomalous samples due to their comparatively higher reconstructed errors. The southwestern Fujian district (China) is chosen as a case study area. A variety of learning rates, iterations, and the size of each hidden layer are constructing and training the deep autoencoder networks on all the geochemical samples. The reconstruction error (or, anomaly score) of each training sample is used to recognize multivariate geochemical anomalies associated with Fe polymetallic mineralization. By comparing the results obtained with a continuous restricted Boltzmann machine, we conclude that the autoencoder network can be trained to recognize multivariate geochemical anomalies. Most of the known skarn-type Fe deposits are located in areas with high reconstruction errors or anomaly scores in the anomaly map, indicating that these anomalies may be related to Fe mineralization. •Recognition of geochemical anomalies using an autoencoder network.•Recognition of geochemical anomalies using continuous restricted Boltzmann machines.•Methods demonstrated in a case study southwestern Fujian district (China).
AbstractList In this paper, we train an autoencoder network to encode and reconstruct a geochemical sample population with unknown complex multivariate probability distributions. During the training, small probability samples contribute little to the autoencoder network. These samples can be recognized by the trained model as anomalous samples due to their comparatively higher reconstructed errors. The southwestern Fujian district (China) is chosen as a case study area. A variety of learning rates, iterations, and the size of each hidden layer are constructing and training the deep autoencoder networks on all the geochemical samples. The reconstruction error (or, anomaly score) of each training sample is used to recognize multivariate geochemical anomalies associated with Fe polymetallic mineralization. By comparing the results obtained with a continuous restricted Boltzmann machine, we conclude that the autoencoder network can be trained to recognize multivariate geochemical anomalies. Most of the known skarn-type Fe deposits are located in areas with high reconstruction errors or anomaly scores in the anomaly map, indicating that these anomalies may be related to Fe mineralization.
In this paper, we train an autoencoder network to encode and reconstruct a geochemical sample population with unknown complex multivariate probability distributions. During the training, small probability samples contribute little to the autoencoder network. These samples can be recognized by the trained model as anomalous samples due to their comparatively higher reconstructed errors. The southwestern Fujian district (China) is chosen as a case study area. A variety of learning rates, iterations, and the size of each hidden layer are constructing and training the deep autoencoder networks on all the geochemical samples. The reconstruction error (or, anomaly score) of each training sample is used to recognize multivariate geochemical anomalies associated with Fe polymetallic mineralization. By comparing the results obtained with a continuous restricted Boltzmann machine, we conclude that the autoencoder network can be trained to recognize multivariate geochemical anomalies. Most of the known skarn-type Fe deposits are located in areas with high reconstruction errors or anomaly scores in the anomaly map, indicating that these anomalies may be related to Fe mineralization. •Recognition of geochemical anomalies using an autoencoder network.•Recognition of geochemical anomalies using continuous restricted Boltzmann machines.•Methods demonstrated in a case study southwestern Fujian district (China).
Author Zuo, Renguang
Xiong, Yihui
Author_xml – sequence: 1
  givenname: Yihui
  surname: Xiong
  fullname: Xiong, Yihui
– sequence: 2
  givenname: Renguang
  surname: Zuo
  fullname: Zuo, Renguang
  email: zrguang@cug.edu.cn
BookMark eNqFkDtPwzAUhS0EEm3hF7BkZEnxI06cgQFV5SFVQkIwW7fOTXFJ7WInIP49LmVioNOVjs53dPWNybHzDgm5YHTKKCuv1lMDK_RTTplMyZTS8oiMmKpEXikqjsmI0lrlgtLilIxjXFNKOVdyROZPaPzK2d56l_k2SyvmFTfWQJeB8xvoLMZsiNatMsgaxG0GQ-_RGd9gyBz2nz68nZGTFrqI5793Ql5u58-z-3zxePcwu1nkIGre50YULWsl53VdgmRQpReWJWCxxKpoBQXBZa2MrJgCJhVHoSQUDdRKKlPBUkzI5X53G_z7gLHXGxsNdh049EPUnLFSpXKpDlZZlcwUQtA6Vet91QQfY8BWG9vDzkgfwHaaUb2zrNf6x7LeWd6FyXJixR92G-wGwtcB6npPYZL1YTHoaGxyio0NaHrdePsv_w2lk5iT
CitedBy_id crossref_primary_10_1007_s11053_017_9345_4
crossref_primary_10_1016_j_gexplo_2021_106875
crossref_primary_10_1007_s11053_022_10038_7
crossref_primary_10_1016_j_gexplo_2021_106872
crossref_primary_10_1016_j_oregeorev_2024_106399
crossref_primary_10_1016_j_oregeorev_2022_105065
crossref_primary_10_1016_j_chemer_2024_126157
crossref_primary_10_1007_s11053_025_10464_3
crossref_primary_10_1007_s11053_024_10409_2
crossref_primary_10_1016_j_apgeochem_2020_104710
crossref_primary_10_1016_j_apgeochem_2023_105765
crossref_primary_10_1016_j_oregeorev_2018_10_006
crossref_primary_10_2478_jaiscr_2022_0017
crossref_primary_10_1029_2024JH000468
crossref_primary_10_3390_app121910029
crossref_primary_10_1016_j_apgeochem_2021_105072
crossref_primary_10_1016_j_oregeorev_2024_106049
crossref_primary_10_1016_j_gexplo_2017_05_008
crossref_primary_10_1016_j_rsase_2025_101561
crossref_primary_10_1007_s11053_022_10080_5
crossref_primary_10_1016_j_jafrearsci_2025_105854
crossref_primary_10_1007_s11004_024_10164_3
crossref_primary_10_1016_j_apgeochem_2020_104843
crossref_primary_10_1007_s12145_025_01811_2
crossref_primary_10_1016_j_cageo_2022_105075
crossref_primary_10_3390_app131910994
crossref_primary_10_1016_j_cageo_2019_01_016
crossref_primary_10_1016_j_cageo_2025_105913
crossref_primary_10_3390_s19071633
crossref_primary_10_1089_ast_2021_0062
crossref_primary_10_1144_geochem2016_024
crossref_primary_10_1016_j_cageo_2021_104817
crossref_primary_10_1016_j_gexplo_2025_107741
crossref_primary_10_1016_j_gexplo_2019_106431
crossref_primary_10_1007_s12665_020_09322_7
crossref_primary_10_1016_j_apgeochem_2025_106385
crossref_primary_10_1016_j_oregeorev_2021_104264
crossref_primary_10_1007_s11004_024_10153_6
crossref_primary_10_1007_s11053_017_9357_0
crossref_primary_10_1007_s11004_022_10024_y
crossref_primary_10_1016_j_oregeorev_2025_106447
crossref_primary_10_3390_min15030222
crossref_primary_10_1016_j_chemer_2021_125794
crossref_primary_10_1016_j_oregeorev_2016_11_014
crossref_primary_10_1016_j_gexplo_2023_107272
crossref_primary_10_1016_j_gexplo_2023_107274
crossref_primary_10_1016_j_gexplo_2023_107157
crossref_primary_10_1007_s11053_023_10227_y
crossref_primary_10_1016_j_apgeochem_2020_104747
crossref_primary_10_1016_j_oregeorev_2023_105787
crossref_primary_10_1007_s11004_024_10141_w
crossref_primary_10_1007_s11053_024_10433_2
crossref_primary_10_1016_j_oregeorev_2022_104693
crossref_primary_10_1016_j_geoen_2023_212132
crossref_primary_10_1007_s11053_019_09471_y
crossref_primary_10_1016_j_oregeorev_2024_106352
crossref_primary_10_1016_j_gexplo_2022_106958
crossref_primary_10_3390_min14101021
crossref_primary_10_1016_j_chemer_2024_126197
crossref_primary_10_1016_j_cageo_2021_104717
crossref_primary_10_1007_s11004_021_09935_z
crossref_primary_10_1007_s11053_019_09564_8
crossref_primary_10_1007_s12145_019_00412_0
crossref_primary_10_3390_s18030693
crossref_primary_10_1134_S0016702920040084
crossref_primary_10_1016_j_apgeochem_2024_106137
crossref_primary_10_1016_j_oregeorev_2023_105418
crossref_primary_10_1007_s11004_021_09979_1
crossref_primary_10_1016_j_oregeorev_2025_106627
crossref_primary_10_1016_j_cageo_2024_105703
crossref_primary_10_1016_j_gexplo_2018_06_013
crossref_primary_10_1016_j_oregeorev_2021_104282
crossref_primary_10_1016_j_cageo_2019_05_011
crossref_primary_10_1016_j_gexplo_2025_107772
crossref_primary_10_1007_s11004_025_10218_0
crossref_primary_10_1007_s10596_021_10104_8
crossref_primary_10_1016_j_apgeochem_2024_106146
crossref_primary_10_1016_j_rsase_2024_101343
crossref_primary_10_1029_2023GC011301
crossref_primary_10_1016_j_oregeorev_2021_104079
crossref_primary_10_3390_app12042247
crossref_primary_10_1016_j_oregeorev_2024_106215
crossref_primary_10_3390_s20216378
crossref_primary_10_3390_app10051657
crossref_primary_10_1007_s11053_022_10075_2
crossref_primary_10_1080_1206212X_2018_1475335
crossref_primary_10_1007_s11053_024_10334_4
crossref_primary_10_3390_su17073051
crossref_primary_10_1016_j_chemer_2023_125959
crossref_primary_10_1016_j_oregeorev_2025_106768
crossref_primary_10_1007_s11053_022_10088_x
crossref_primary_10_1016_j_oregeorev_2019_102985
crossref_primary_10_1007_s11707_018_0704_1
crossref_primary_10_1007_s11053_021_09865_x
crossref_primary_10_3390_app9194180
crossref_primary_10_1038_s41598_024_73357_0
crossref_primary_10_1016_j_cageo_2020_104667
crossref_primary_10_1016_j_earscirev_2025_105209
crossref_primary_10_1016_j_gexplo_2025_107671
crossref_primary_10_3390_min9050270
crossref_primary_10_1016_j_gexplo_2017_10_020
crossref_primary_10_1016_j_oregeorev_2022_104916
crossref_primary_10_1016_j_chemer_2022_125905
crossref_primary_10_1016_j_gexplo_2023_107326
crossref_primary_10_1016_j_gexplo_2020_106637
crossref_primary_10_5194_se_15_731_2024
crossref_primary_10_1186_s13174_019_0115_x
crossref_primary_10_1007_s11053_022_10143_7
crossref_primary_10_1029_2021EA001927
crossref_primary_10_1016_j_cageo_2020_104484
crossref_primary_10_1007_s11053_020_09798_x
crossref_primary_10_1007_s12145_025_01843_8
crossref_primary_10_1016_j_apgeochem_2020_104679
crossref_primary_10_1007_s11004_025_10190_9
crossref_primary_10_1109_ACCESS_2019_2948800
crossref_primary_10_1155_2018_3145947
crossref_primary_10_1016_j_oregeorev_2025_106705
crossref_primary_10_1007_s11004_024_10158_1
crossref_primary_10_1016_j_oregeorev_2024_106204
crossref_primary_10_1016_j_cageo_2022_105100
crossref_primary_10_1016_j_chemer_2024_126209
crossref_primary_10_1016_j_cageo_2025_106011
crossref_primary_10_1016_j_chemer_2024_126208
crossref_primary_10_3390_min13060730
crossref_primary_10_1007_s00521_019_04341_3
crossref_primary_10_1016_j_earscirev_2019_02_023
crossref_primary_10_1016_j_cageo_2017_10_005
crossref_primary_10_1038_s41598_024_56644_8
crossref_primary_10_1007_s00603_020_02314_w
crossref_primary_10_1016_j_apgeochem_2021_105111
crossref_primary_10_1016_j_gexplo_2024_107393
crossref_primary_10_1007_s11053_023_10268_3
crossref_primary_10_1016_j_cageo_2023_105392
crossref_primary_10_1016_j_oregeorev_2025_106615
crossref_primary_10_1029_2022EA002626
crossref_primary_10_3390_min12091174
crossref_primary_10_1016_j_cageo_2024_105679
crossref_primary_10_1007_s11004_022_10038_6
crossref_primary_10_1371_journal_pone_0218930
crossref_primary_10_1007_s11004_022_10042_w
crossref_primary_10_1007_s13762_016_1095_z
crossref_primary_10_1007_s11004_023_10133_2
crossref_primary_10_1007_s12517_022_09536_y
crossref_primary_10_1016_j_cageo_2019_104312
crossref_primary_10_1016_j_cageo_2021_104890
crossref_primary_10_1007_s11053_023_10279_0
crossref_primary_10_1016_j_apgeochem_2023_105807
crossref_primary_10_1038_s41598_025_07534_0
crossref_primary_10_1007_s11053_024_10321_9
crossref_primary_10_1007_s11053_024_10344_2
crossref_primary_10_1007_s11053_021_09934_1
crossref_primary_10_1016_j_pepi_2020_106584
crossref_primary_10_1016_j_oregeorev_2022_104955
crossref_primary_10_1016_j_jappgeo_2023_105046
crossref_primary_10_1016_j_oregeorev_2023_105706
crossref_primary_10_1016_j_oregeorev_2022_105024
crossref_primary_10_1016_j_cageo_2023_105490
crossref_primary_10_1016_j_oregeorev_2022_105265
crossref_primary_10_1007_s11053_023_10200_9
crossref_primary_10_1007_s11004_023_10059_9
crossref_primary_10_1016_j_cageo_2024_105657
crossref_primary_10_1016_j_earscirev_2016_04_006
crossref_primary_10_3390_min13101332
crossref_primary_10_1016_j_procs_2018_08_282
crossref_primary_10_1016_j_gexplo_2017_06_021
crossref_primary_10_1016_j_apgeochem_2021_104994
crossref_primary_10_1016_j_chemer_2024_126111
crossref_primary_10_1016_j_apgeochem_2023_105722
crossref_primary_10_3390_app13158992
crossref_primary_10_1109_ACCESS_2020_2978112
crossref_primary_10_1016_j_apgeochem_2021_105043
crossref_primary_10_1007_s40808_024_02157_2
crossref_primary_10_1007_s12583_020_1365_z
crossref_primary_10_1007_s12583_020_1079_2
crossref_primary_10_1007_s12583_024_0090_4
crossref_primary_10_1007_s11053_024_10317_5
crossref_primary_10_1016_j_chemer_2024_126125
crossref_primary_10_1016_j_gexplo_2020_106704
crossref_primary_10_1007_s11053_019_09510_8
crossref_primary_10_1016_j_apgeochem_2020_104760
crossref_primary_10_1016_j_oregeorev_2021_104316
crossref_primary_10_3390_min13111384
crossref_primary_10_1016_j_gexplo_2019_04_007
crossref_primary_10_1007_s12583_021_1402_6
crossref_primary_10_1016_j_apgeochem_2022_105450
crossref_primary_10_1007_s11053_025_10496_9
crossref_primary_10_1016_j_cageo_2022_105153
crossref_primary_10_1177_16878132221081584
crossref_primary_10_3103_S0747923925700203
crossref_primary_10_1134_S0001433825700124
crossref_primary_10_1016_j_engappai_2025_112188
crossref_primary_10_1016_j_gexplo_2018_07_009
crossref_primary_10_1016_j_oregeorev_2019_02_027
crossref_primary_10_1016_j_oregeorev_2020_103611
crossref_primary_10_1007_s11004_025_10191_8
crossref_primary_10_1016_j_apgeochem_2023_105621
crossref_primary_10_1007_s12145_024_01611_0
crossref_primary_10_1007_s11053_017_9351_6
crossref_primary_10_1109_ACCESS_2022_3187961
crossref_primary_10_1016_j_oregeorev_2022_104765
crossref_primary_10_3390_min12050616
crossref_primary_10_1016_j_cageo_2023_105341
crossref_primary_10_3390_min11080816
crossref_primary_10_1016_j_gexplo_2021_106904
crossref_primary_10_1016_j_apgeochem_2020_104668
crossref_primary_10_1007_s11053_020_09789_y
Cites_doi 10.1561/2200000006
10.1016/0375-6742(91)90071-2
10.1016/j.gexplo.2014.10.010
10.1016/j.apgeochem.2009.04.024
10.1016/j.gexplo.2012.02.002
10.1016/j.gexplo.2014.05.005
10.1016/j.gexplo.2015.06.004
10.1016/j.gexplo.2011.06.012
10.1007/BF00890195
10.1162/neco.2006.18.7.1527
10.1016/j.apgeochem.2013.02.009
10.1016/j.gexplo.2014.02.013
10.1016/j.gexplo.2013.08.013
10.1049/ip-vis:20030362
10.1162/089976602760128018
10.1016/S0375-6742(97)00029-0
10.1007/s00254-006-0528-2
10.1111/rge.12070
10.1016/j.oregeorev.2006.10.002
10.1145/2689746.2689747
10.1016/j.gexplo.2012.09.009
10.1144/1467-7873/06-109
10.1016/S0169-1368(99)00027-X
10.1016/j.gexplo.2012.07.007
10.1016/S0375-6742(02)00276-5
10.1016/0375-6742(74)90030-2
10.1126/science.1127647
10.1016/S0893-6080(01)00097-1
10.1016/j.neucom.2012.11.050
10.1016/S0375-6742(99)00077-1
10.1016/0375-6742(94)90013-2
10.1016/j.oregeorev.2014.08.012
10.1016/j.gexplo.2008.08.003
10.1016/j.oregeorev.2014.09.024
10.1111/j.1365-246X.2012.05429.x
10.1007/s11053-013-9217-5
10.1016/j.oregeorev.2013.09.009
10.1023/A:1007529726302
10.1023/A:1023818214614
10.1007/BF02080498
10.1023/A:1010109829861
10.1007/s11004-007-9141-5
10.1007/s002549900081
10.1144/1467-7873/09-224
10.1002/env.966
10.1007/s00531-014-1096-4
10.1109/ACPR.2013.37
10.1016/j.gexplo.2011.05.007
10.1016/j.gexplo.2015.04.013
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.cageo.2015.10.006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
EndPage 82
ExternalDocumentID 10_1016_j_cageo_2015_10_006
S0098300415300728
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-a392t-c34f1f522996a51a7285b6ae4be74f30a32598c5718a1582e385a4da9858c7ab3
ISICitedReferencesCount 234
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366770500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3004
IngestDate Sat Sep 27 19:27:53 EDT 2025
Sun Sep 28 05:50:53 EDT 2025
Sat Nov 29 03:42:10 EST 2025
Tue Nov 18 21:46:53 EST 2025
Fri Feb 23 02:34:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Skarn-type iron deposits
Multivariate geochemical data
Autoencoder network
Geochemical exploration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a392t-c34f1f522996a51a7285b6ae4be74f30a32598c5718a1582e385a4da9858c7ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1778043309
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_2116885868
proquest_miscellaneous_1778043309
crossref_citationtrail_10_1016_j_cageo_2015_10_006
crossref_primary_10_1016_j_cageo_2015_10_006
elsevier_sciencedirect_doi_10_1016_j_cageo_2015_10_006
PublicationCentury 2000
PublicationDate January 2016
2016-01-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationTitle Computers & geosciences
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Zuo, Cheng (bib58) 2015; 65
Carranza (bib8) 2010; 10
Zuo, Zhang, Zhang, Carranza, Wang (bib67) 2015; 71
Zhang, Zuo, Xiong (bib59) 2015
Zuo (bib61) 2014; 139
Wang, Zuo (bib50) 2015
Harris, Wilkinson, Grunsky (bib26) 2000; 16
Govett, Goodfellow, Chapman, Chork (bib22) 1975; 7
Sakurada, M., Yairi, T., 2014. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the Second Workshop on Machine Learning for Sensory Data Analysis, pp. 4.
Chen, Lu, Li (bib12) 2014; 140
Chen, Murray (bib10) 2003; 150
Harris, Wilkinson, Grunsky, Heather, Ayer (bib27) 1999; 67
Sun, Steinecker, Glocker (bib43) 2014
Zhang, Wu, Di, Wang, Yao, Zhang, Lv, Yuan, Shi (bib55) 2012; 37
Bengio, Lamblin, Popovici, Larochelle (bib6) 2007; 19
Hinton (bib29) 2002; 14
Chen (bib11) 2014; 71
Wackernagel (bib46) 2003
Cheng (bib13) 2007; 32
Fiore, Palmieri, Castiglione, De Santis (bib20) 2013; 122
Agterberg, Bonham-Carter, Wright (bib1) 1990
Yang, Zhang, Feng, She, Li (bib52) 2008; 27
Grunsky, Drew, Sutphin (bib24) 2009; 24
Luz, Mateus, Matos, Gonçalves (bib35) 2014; 23
Zuo, Xia, Zhang (bib66) 2013; 33
Valentine, Trampert (bib45) 2012; 189
Yousefi, Kamkar-Rouhani, Carranza (bib53) 2012; 115
Carranza (bib9) 2011; 110
Zhang, Zuo (bib56) 2014; 57
Reimann, Filzmoser (bib37) 2000; 39
Gałuszka (bib21) 2007; 52
Ali, Cheng, Li, Chen (bib4) 2006; 6
Cheng, Xu, Grunsky (bib16) 2000; 9
Yuan, Feng, Zhang, Di, Wang, Ni (bib54) 2013
Sahasrabudhe, M., Namboodiri, A.M., 2013. Learning fingerprint orientation fields using continuous restricted Boltzmann machines. In: Proceedings of the Second IAPR Asian Conference on Pattern Recognition, pp. 351–355.
Zuo, Carranza, Cheng (bib62) 2012; 122
Cheng, Agterberg, Ballantyne (bib15) 1994; 51
Tukey (bib44) 1997
Zuo (bib60) 2011; 111
Rumelhart, Hinton, Williams (bib38) 1988
Sinclair (bib42) 1991; 41
Zuo, Wang (bib64) 2015
Sinclair (bib41) 1974; 3
Hawkes, Webb (bib28) 1962
Grunsky, Agterberg (bib23) 1988; 20
Zuo, Cheng, Agterberg, Xia (bib63) 2009; 101
Wang, Cheng, Zuo (bib48) 2015; 157
Filzmoser, Hron, Reimann (bib19) 2009; 20
Han, Ge (bib25) 1983; 7
Hinton (bib30) 2010
Xie, Mu, Ren (bib51) 1997; 60
Egozcue, Pawlowsky-Glahn, Mateu-Figueras, Barcelo-Vidal (bib17) 2003; 35
Wang, Cheng, Zuo (bib49) 2015; 148
Li, Ma, Shi (bib34) 2003; 77
Filzmoser, Hron (bib18) 2008; 40
Zuo, Wang, Chen, Yang (bib65) 2015; 148
Aitchison (bib2) 1986
Aitchison, Barceló-Vidal, Martín-Fernández, Pawlowsky-Glahn (bib3) 2000; 32
Bonham-Cater (bib7) 1994
Wang, Zuo (bib47) 2015; 155
Bengio (bib5) 2009; 2
Cheng (bib14) 2012; 122
Murray (bib36) 2001; 14
Hinton, Salakhutdinov (bib32) 2006; 313
Larochelle, Bengio, Louradour, Lamblin (bib33) 2009; 10
Zhang, Zuo, Cheng (bib57) 2015; 104
Hinton, Osindero, Teh (bib31) 2006; 18
Fiore (10.1016/j.cageo.2015.10.006_bib20) 2013; 122
Bengio (10.1016/j.cageo.2015.10.006_bib5) 2009; 2
Zhang (10.1016/j.cageo.2015.10.006_bib55) 2012; 37
10.1016/j.cageo.2015.10.006_bib39
Gałuszka (10.1016/j.cageo.2015.10.006_bib21) 2007; 52
Rumelhart (10.1016/j.cageo.2015.10.006_bib38) 1988
Zhang (10.1016/j.cageo.2015.10.006_bib59) 2015
Chen (10.1016/j.cageo.2015.10.006_bib10) 2003; 150
Chen (10.1016/j.cageo.2015.10.006_bib12) 2014; 140
Hinton (10.1016/j.cageo.2015.10.006_bib29) 2002; 14
Zuo (10.1016/j.cageo.2015.10.006_bib64) 2015
Wang (10.1016/j.cageo.2015.10.006_bib50) 2015
Xie (10.1016/j.cageo.2015.10.006_bib51) 1997; 60
Grunsky (10.1016/j.cageo.2015.10.006_bib24) 2009; 24
Carranza (10.1016/j.cageo.2015.10.006_bib9) 2011; 110
Chen (10.1016/j.cageo.2015.10.006_bib11) 2014; 71
Luz (10.1016/j.cageo.2015.10.006_bib35) 2014; 23
Zuo (10.1016/j.cageo.2015.10.006_bib67) 2015; 71
Harris (10.1016/j.cageo.2015.10.006_bib26) 2000; 16
Zuo (10.1016/j.cageo.2015.10.006_bib60) 2011; 111
Agterberg (10.1016/j.cageo.2015.10.006_bib1) 1990
Hinton (10.1016/j.cageo.2015.10.006_bib30) 2010
Hinton (10.1016/j.cageo.2015.10.006_bib31) 2006; 18
Hinton (10.1016/j.cageo.2015.10.006_bib32) 2006; 313
Zuo (10.1016/j.cageo.2015.10.006_bib65) 2015; 148
Cheng (10.1016/j.cageo.2015.10.006_bib14) 2012; 122
Yang (10.1016/j.cageo.2015.10.006_bib52) 2008; 27
Li (10.1016/j.cageo.2015.10.006_bib34) 2003; 77
Zuo (10.1016/j.cageo.2015.10.006_bib62) 2012; 122
Carranza (10.1016/j.cageo.2015.10.006_bib8) 2010; 10
Zhang (10.1016/j.cageo.2015.10.006_bib57) 2015; 104
Zuo (10.1016/j.cageo.2015.10.006_bib63) 2009; 101
Grunsky (10.1016/j.cageo.2015.10.006_bib23) 1988; 20
Sun (10.1016/j.cageo.2015.10.006_bib43) 2014
Egozcue (10.1016/j.cageo.2015.10.006_bib17) 2003; 35
Cheng (10.1016/j.cageo.2015.10.006_bib15) 1994; 51
Aitchison (10.1016/j.cageo.2015.10.006_bib3) 2000; 32
Han (10.1016/j.cageo.2015.10.006_bib25) 1983; 7
Reimann (10.1016/j.cageo.2015.10.006_bib37) 2000; 39
Sinclair (10.1016/j.cageo.2015.10.006_bib42) 1991; 41
Murray (10.1016/j.cageo.2015.10.006_bib36) 2001; 14
Bonham-Cater (10.1016/j.cageo.2015.10.006_bib7) 1994
Tukey (10.1016/j.cageo.2015.10.006_bib44) 1997
Aitchison (10.1016/j.cageo.2015.10.006_bib2) 1986
Yousefi (10.1016/j.cageo.2015.10.006_bib53) 2012; 115
Yuan (10.1016/j.cageo.2015.10.006_bib54) 2013
Filzmoser (10.1016/j.cageo.2015.10.006_bib19) 2009; 20
Sinclair (10.1016/j.cageo.2015.10.006_bib41) 1974; 3
10.1016/j.cageo.2015.10.006_bib40
Cheng (10.1016/j.cageo.2015.10.006_bib16) 2000; 9
Bengio (10.1016/j.cageo.2015.10.006_bib6) 2007; 19
Wackernagel (10.1016/j.cageo.2015.10.006_bib46) 2003
Wang (10.1016/j.cageo.2015.10.006_bib47) 2015; 155
Wang (10.1016/j.cageo.2015.10.006_bib49) 2015; 148
Harris (10.1016/j.cageo.2015.10.006_bib27) 1999; 67
Valentine (10.1016/j.cageo.2015.10.006_bib45) 2012; 189
Zuo (10.1016/j.cageo.2015.10.006_bib66) 2013; 33
Hawkes (10.1016/j.cageo.2015.10.006_bib28) 1962
Zhang (10.1016/j.cageo.2015.10.006_bib58) 2015; 65
Filzmoser (10.1016/j.cageo.2015.10.006_bib18) 2008; 40
Cheng (10.1016/j.cageo.2015.10.006_bib13) 2007; 32
Larochelle (10.1016/j.cageo.2015.10.006_bib33) 2009; 10
Zhang (10.1016/j.cageo.2015.10.006_bib56) 2014; 57
Ali (10.1016/j.cageo.2015.10.006_bib4) 2006; 6
Wang (10.1016/j.cageo.2015.10.006_bib48) 2015; 157
Govett (10.1016/j.cageo.2015.10.006_bib22) 1975; 7
Zuo (10.1016/j.cageo.2015.10.006_bib61) 2014; 139
References_xml – volume: 7
  start-page: 415
  year: 1975
  end-page: 446
  ident: bib22
  article-title: Exploration geochemistry distribution of elements and recognition of anomalies
  publication-title: Math. Geol.
– volume: 115
  start-page: 24
  year: 2012
  end-page: 35
  ident: bib53
  article-title: Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping
  publication-title: J. Geochem. Explor.
– volume: 6
  start-page: 341
  year: 2006
  end-page: 348
  ident: bib4
  article-title: Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in south-central Yunnan Province, China
  publication-title: Geochem. Explor. Environ. Anal.
– volume: 7
  start-page: 1
  year: 1983
  end-page: 118
  ident: bib25
  article-title: Geological and geochemical features of submarine volcanic hydrothermal-sedimentary mineralization of Makeng iron deposit, Fujian Province
  publication-title: Bull. Inst. Miner. Deposits Chin. Acad. Geol. Sci.
– reference: Sakurada, M., Yairi, T., 2014. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the Second Workshop on Machine Learning for Sensory Data Analysis, pp. 4.
– volume: 111
  start-page: 13
  year: 2011
  end-page: 22
  ident: bib60
  article-title: Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China)
  publication-title: J. Geochem. Explor.
– volume: 110
  start-page: 167
  year: 2011
  end-page: 185
  ident: bib9
  article-title: Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values
  publication-title: J. Geochem. Explor.
– volume: 189
  start-page: 1183
  year: 2012
  end-page: 1202
  ident: bib45
  article-title: Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data
  publication-title: Geophys. J. Int.
– volume: 104
  start-page: 663
  year: 2015
  end-page: 682
  ident: bib57
  article-title: The mineralization age of the Makeng Fe deposit, South China: implications from U–Pb and Sm–Nd geochronology
  publication-title: Int. J. Earth Sci.
– reference: Sahasrabudhe, M., Namboodiri, A.M., 2013. Learning fingerprint orientation fields using continuous restricted Boltzmann machines. In: Proceedings of the Second IAPR Asian Conference on Pattern Recognition, pp. 351–355.
– volume: 122
  start-page: 13
  year: 2013
  end-page: 23
  ident: bib20
  article-title: Network anomaly detection with the restricted Boltzmann machine
  publication-title: Neurocomputing
– start-page: 398
  year: 1994
  ident: bib7
  article-title: Geographic Information Systems for Geoscientist: Modeling with GIS
– volume: 19
  start-page: 153
  year: 2007
  end-page: 160
  ident: bib6
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 40
  start-page: 233
  year: 2008
  end-page: 248
  ident: bib18
  article-title: Outlier detection for compositional data using robust methods
  publication-title: Math. Geosci.
– volume: 150
  start-page: 153
  year: 2003
  end-page: 158
  ident: bib10
  article-title: Continuous restricted Boltzmann machine with an implementable training algorithm
  publication-title: Vision Image Signal Process. IEEE Process.
– volume: 16
  start-page: 107
  year: 2000
  end-page: 143
  ident: bib26
  article-title: Effective use and interpretation of lithogeochemical data in regional mineral exploration programs: application of Geographic Information Systems (GIS) technology
  publication-title: Ore Geol. Rev.
– volume: 10
  start-page: 365
  year: 2010
  end-page: 381
  ident: bib8
  article-title: Catchment basin modelling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis
  publication-title: Geochem. Explor. Environ. Anal.
– volume: 39
  start-page: 1001
  year: 2000
  end-page: 1014
  ident: bib37
  article-title: Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data
  publication-title: Environ. Geol.
– start-page: 381
  year: 2003
  ident: bib46
  article-title: Multivariate Geostatistics: An Introduction with Applications
– volume: 122
  start-page: 55
  year: 2012
  end-page: 70
  ident: bib14
  article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas
  publication-title: J. Geochem. Explor.
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: bib29
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– volume: 157
  start-page: 110
  year: 2015
  end-page: 119
  ident: bib48
  article-title: Quantifying the spatial characteristics of geochemical patterns via GIS-based geographically weighted statistics
  publication-title: J. Geochem. Explor.
– volume: 27
  start-page: 329
  year: 2008
  end-page: 335
  ident: bib52
  article-title: SHRIMP zircon U–Pb dating of quartz porphyry from Zhongjia tin–polymetallic deposit in Longyan area, Fujian province, and its geological significance
  publication-title: Miner. Depos.
– volume: 71
  start-page: 749
  year: 2014
  end-page: 760
  ident: bib11
  article-title: Mineral potential mapping with a restricted Boltzmann machine
  publication-title: Ore Geol. Rev.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib31
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 10
  start-page: 1
  year: 2009
  end-page: 40
  ident: bib33
  article-title: Exploring strategies for training deep neural networks
  publication-title: J. Mach. Learn. Res.
– year: 2015
  ident: bib59
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Sci. China Earth Sci.
– year: 2015
  ident: bib64
  article-title: Fractal/multifractal modeling of geochemical data: a review
  publication-title: J. Geochem. Explor.
– volume: 77
  start-page: 167
  year: 2003
  end-page: 175
  ident: bib34
  article-title: Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background
  publication-title: J. Geochem. Explor.
– volume: 148
  start-page: 12
  year: 2015
  end-page: 24
  ident: bib65
  article-title: Identification of weak anomalies: a multifractal perspective
  publication-title: J. Geochem. Explor.
– volume: 41
  start-page: 1
  year: 1991
  end-page: 22
  ident: bib42
  article-title: A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited
  publication-title: J. Geochem. Explor.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib32
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 60
  start-page: 99
  year: 1997
  end-page: 113
  ident: bib51
  article-title: Geochemical mapping in China
  publication-title: J. Geochem. Explor.
– volume: 122
  start-page: 1
  year: 2012
  end-page: 3
  ident: bib62
  article-title: Fractal/multifractalmodelling of geochemical exploration data
  publication-title: J. Geochem. Explor.
– volume: 155
  start-page: 84
  year: 2015
  end-page: 90
  ident: bib47
  article-title: A comparative study of trend surface analysis and spectrum-area multifractal model to identify geochemical anomalies
  publication-title: J. Geochem. Explor.
– start-page: 416
  year: 1986
  ident: bib2
  article-title: The statistical analysis of compositional data
– volume: 57
  start-page: 53
  year: 2014
  end-page: 60
  ident: bib56
  article-title: Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China
  publication-title: Ore Geol. Rev.
– volume: 37
  start-page: 1217
  year: 2012
  end-page: 1231
  ident: bib55
  article-title: Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance
  publication-title: Earth Sci. J. China Univ. Geosci.
– volume: 71
  start-page: 502
  year: 2015
  end-page: 515
  ident: bib67
  article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China
  publication-title: Ore Geol. Rev.
– year: 1997
  ident: bib44
  article-title: Exploratory Data Analysis
– volume: 52
  start-page: 861
  year: 2007
  end-page: 870
  ident: bib21
  article-title: A review of geochemical background concepts and an example using data from Poland
  publication-title: Environ. Geol.
– volume: 14
  start-page: 1257
  year: 2001
  end-page: 1264
  ident: bib36
  article-title: Novelty detection using products of simple experts—a potential architecture for embedded systems
  publication-title: Neural Netw.
– volume: 3
  start-page: 129
  year: 1974
  end-page: 149
  ident: bib41
  article-title: Selection of threshold values in geochemical data using probability graphs
  publication-title: J. Geochem. Explor.
– volume: 101
  start-page: 225
  year: 2009
  end-page: 235
  ident: bib63
  article-title: Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China
  publication-title: J. Geochem. Explor.
– volume: 9
  start-page: 43
  year: 2000
  end-page: 52
  ident: bib16
  article-title: Integrated spatial and spectrum method for geochemical anomaly separation
  publication-title: Nat. Resour. Res.
– volume: 33
  start-page: 165
  year: 2013
  end-page: 172
  ident: bib66
  article-title: A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas
  publication-title: Appl. Geochem.
– volume: 32
  start-page: 271
  year: 2000
  end-page: 275
  ident: bib3
  article-title: Logratio analysis and compositional distance
  publication-title: Math. Geol.
– year: 2010
  ident: bib30
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Technical Report, University of Toronto
– volume: 51
  start-page: 109
  year: 1994
  end-page: 130
  ident: bib15
  article-title: The separation of geochemical anomalies from background by fractal methods
  publication-title: J. Geochem. Explor.
– volume: 20
  start-page: 825
  year: 1988
  end-page: 861
  ident: bib23
  article-title: Spatial and multivariate analysis of geochemical data from metavolcanic rocks in the Ben Nevis area, Ontario
  publication-title: Math. Geol.
– volume: 20
  start-page: 621
  year: 2009
  end-page: 632
  ident: bib19
  article-title: Principal component analysis for compositional data with outliers
  publication-title: Environmetrics
– volume: 65
  start-page: 266
  year: 2015
  end-page: 284
  ident: bib58
  article-title: Geological features and formation processes of the Makeng Fe deposit, China
  publication-title: Resour. Geol.
– volume: 139
  start-page: 170
  year: 2014
  end-page: 176
  ident: bib61
  article-title: Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China
  publication-title: J. Geochem. Explor.
– year: 2015
  ident: bib50
  article-title: A MATLAB-based program for processing geochemical data using fractal/multifractal modeling
  publication-title: Earth Sci. Inform.
– volume: 32
  start-page: 314
  year: 2007
  end-page: 324
  ident: bib13
  article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China
  publication-title: Ore Geol. Rev.
– volume: 148
  start-page: 259
  year: 2015
  end-page: 269
  ident: bib49
  article-title: Spatial characteristics of geochemical patterns related to Fe mineralization in the southwestern Fujian province (China)
  publication-title: J. Geochem. Explor.
– volume: 67
  start-page: 301
  year: 1999
  end-page: 334
  ident: bib27
  article-title: Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt, Ontario
  publication-title: J. Geochem. Explor.
– year: 1988
  ident: bib38
  article-title: Learning Representations by Back-propagation Errors
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib5
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– volume: 35
  start-page: 279
  year: 2003
  end-page: 300
  ident: bib17
  article-title: Isometric logratio transformations for compositional data analysis
  publication-title: Math. Geol.
– volume: 140
  start-page: 56
  year: 2014
  end-page: 63
  ident: bib12
  article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly
  publication-title: J. Geochem. Explor.
– volume: 23
  start-page: 195
  year: 2014
  end-page: 215
  ident: bib35
  article-title: Cu- and Zn-soil anomalies in the NE border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses
  publication-title: Nat. Resour. Res.
– start-page: 1
  year: 1990
  end-page: 21
  ident: bib1
  article-title: Statistical pattern integration for mineral exploration
  publication-title: Computer Applications in Resource Estimation Prediction and Assessment for Metals and Petroleum
– start-page: 87
  year: 2014
  end-page: 93
  ident: bib43
  article-title: Application of deep belief networks for precision mechanism quality inspection
  publication-title: Precision Assembly Technologies and Systems
– year: 1962
  ident: bib28
  article-title: Geochemistry in Mineral Exploration
– start-page: S73
  year: 2013
  end-page: S75
  ident: bib54
  article-title: Geochronology of Dapai iron–polymetallic deposit in Yongding city, Fujian province and its geological significance
  publication-title: Acta Miner. Sin.
– volume: 24
  start-page: 1602
  year: 2009
  end-page: 1616
  ident: bib24
  article-title: Process recognition in multi-element soil and stream-sediment geochemical data
  publication-title: Appl. Geochem.
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.cageo.2015.10.006_bib5
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 41
  start-page: 1
  year: 1991
  ident: 10.1016/j.cageo.2015.10.006_bib42
  article-title: A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(91)90071-2
– volume: 148
  start-page: 259
  year: 2015
  ident: 10.1016/j.cageo.2015.10.006_bib49
  article-title: Spatial characteristics of geochemical patterns related to Fe mineralization in the southwestern Fujian province (China)
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.10.010
– volume: 24
  start-page: 1602
  year: 2009
  ident: 10.1016/j.cageo.2015.10.006_bib24
  article-title: Process recognition in multi-element soil and stream-sediment geochemical data
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2009.04.024
– volume: 10
  start-page: 1
  year: 2009
  ident: 10.1016/j.cageo.2015.10.006_bib33
  article-title: Exploring strategies for training deep neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 115
  start-page: 24
  year: 2012
  ident: 10.1016/j.cageo.2015.10.006_bib53
  article-title: Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2012.02.002
– volume: 148
  start-page: 12
  year: 2015
  ident: 10.1016/j.cageo.2015.10.006_bib65
  article-title: Identification of weak anomalies: a multifractal perspective
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.05.005
– volume: 157
  start-page: 110
  year: 2015
  ident: 10.1016/j.cageo.2015.10.006_bib48
  article-title: Quantifying the spatial characteristics of geochemical patterns via GIS-based geographically weighted statistics
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.06.004
– volume: 111
  start-page: 13
  year: 2011
  ident: 10.1016/j.cageo.2015.10.006_bib60
  article-title: Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China)
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2011.06.012
– volume: 20
  start-page: 825
  year: 1988
  ident: 10.1016/j.cageo.2015.10.006_bib23
  article-title: Spatial and multivariate analysis of geochemical data from metavolcanic rocks in the Ben Nevis area, Ontario
  publication-title: Math. Geol.
  doi: 10.1007/BF00890195
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.cageo.2015.10.006_bib31
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 33
  start-page: 165
  year: 2013
  ident: 10.1016/j.cageo.2015.10.006_bib66
  article-title: A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2013.02.009
– volume: 140
  start-page: 56
  year: 2014
  ident: 10.1016/j.cageo.2015.10.006_bib12
  article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.02.013
– year: 2010
  ident: 10.1016/j.cageo.2015.10.006_bib30
  article-title: A practical guide to training restricted Boltzmann machines
– volume: 139
  start-page: 170
  year: 2014
  ident: 10.1016/j.cageo.2015.10.006_bib61
  article-title: Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2013.08.013
– volume: 150
  start-page: 153
  year: 2003
  ident: 10.1016/j.cageo.2015.10.006_bib10
  article-title: Continuous restricted Boltzmann machine with an implementable training algorithm
  publication-title: Vision Image Signal Process. IEEE Process.
  doi: 10.1049/ip-vis:20030362
– start-page: 416
  year: 1986
  ident: 10.1016/j.cageo.2015.10.006_bib2
– volume: 14
  start-page: 1771
  year: 2002
  ident: 10.1016/j.cageo.2015.10.006_bib29
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– year: 1997
  ident: 10.1016/j.cageo.2015.10.006_bib44
– volume: 60
  start-page: 99
  year: 1997
  ident: 10.1016/j.cageo.2015.10.006_bib51
  article-title: Geochemical mapping in China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(97)00029-0
– volume: 52
  start-page: 861
  year: 2007
  ident: 10.1016/j.cageo.2015.10.006_bib21
  article-title: A review of geochemical background concepts and an example using data from Poland
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-006-0528-2
– volume: 65
  start-page: 266
  year: 2015
  ident: 10.1016/j.cageo.2015.10.006_bib58
  article-title: Geological features and formation processes of the Makeng Fe deposit, China
  publication-title: Resour. Geol.
  doi: 10.1111/rge.12070
– volume: 32
  start-page: 314
  year: 2007
  ident: 10.1016/j.cageo.2015.10.006_bib13
  article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2006.10.002
– year: 1962
  ident: 10.1016/j.cageo.2015.10.006_bib28
– year: 2015
  ident: 10.1016/j.cageo.2015.10.006_bib64
  article-title: Fractal/multifractal modeling of geochemical data: a review
  publication-title: J. Geochem. Explor.
– ident: 10.1016/j.cageo.2015.10.006_bib40
  doi: 10.1145/2689746.2689747
– volume: 122
  start-page: 1
  year: 2012
  ident: 10.1016/j.cageo.2015.10.006_bib62
  article-title: Fractal/multifractalmodelling of geochemical exploration data
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2012.09.009
– start-page: S73
  issue: Suppl.
  year: 2013
  ident: 10.1016/j.cageo.2015.10.006_bib54
  article-title: Geochronology of Dapai iron–polymetallic deposit in Yongding city, Fujian province and its geological significance
  publication-title: Acta Miner. Sin.
– year: 2015
  ident: 10.1016/j.cageo.2015.10.006_bib50
  article-title: A MATLAB-based program for processing geochemical data using fractal/multifractal modeling
  publication-title: Earth Sci. Inform.
– volume: 6
  start-page: 341
  year: 2006
  ident: 10.1016/j.cageo.2015.10.006_bib4
  article-title: Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in south-central Yunnan Province, China
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/06-109
– volume: 16
  start-page: 107
  year: 2000
  ident: 10.1016/j.cageo.2015.10.006_bib26
  article-title: Effective use and interpretation of lithogeochemical data in regional mineral exploration programs: application of Geographic Information Systems (GIS) technology
  publication-title: Ore Geol. Rev.
  doi: 10.1016/S0169-1368(99)00027-X
– start-page: 87
  year: 2014
  ident: 10.1016/j.cageo.2015.10.006_bib43
  article-title: Application of deep belief networks for precision mechanism quality inspection
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.cageo.2015.10.006_bib6
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 122
  start-page: 55
  year: 2012
  ident: 10.1016/j.cageo.2015.10.006_bib14
  article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2012.07.007
– volume: 77
  start-page: 167
  year: 2003
  ident: 10.1016/j.cageo.2015.10.006_bib34
  article-title: Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(02)00276-5
– volume: 3
  start-page: 129
  year: 1974
  ident: 10.1016/j.cageo.2015.10.006_bib41
  article-title: Selection of threshold values in geochemical data using probability graphs
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(74)90030-2
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.cageo.2015.10.006_bib32
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 14
  start-page: 1257
  year: 2001
  ident: 10.1016/j.cageo.2015.10.006_bib36
  article-title: Novelty detection using products of simple experts—a potential architecture for embedded systems
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(01)00097-1
– volume: 122
  start-page: 13
  year: 2013
  ident: 10.1016/j.cageo.2015.10.006_bib20
  article-title: Network anomaly detection with the restricted Boltzmann machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.050
– volume: 67
  start-page: 301
  year: 1999
  ident: 10.1016/j.cageo.2015.10.006_bib27
  article-title: Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt, Ontario
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(99)00077-1
– volume: 51
  start-page: 109
  year: 1994
  ident: 10.1016/j.cageo.2015.10.006_bib15
  article-title: The separation of geochemical anomalies from background by fractal methods
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(94)90013-2
– volume: 71
  start-page: 749
  year: 2014
  ident: 10.1016/j.cageo.2015.10.006_bib11
  article-title: Mineral potential mapping with a restricted Boltzmann machine
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.08.012
– volume: 101
  start-page: 225
  year: 2009
  ident: 10.1016/j.cageo.2015.10.006_bib63
  article-title: Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2008.08.003
– volume: 37
  start-page: 1217
  year: 2012
  ident: 10.1016/j.cageo.2015.10.006_bib55
  article-title: Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance
  publication-title: Earth Sci. J. China Univ. Geosci.
– volume: 71
  start-page: 502
  year: 2015
  ident: 10.1016/j.cageo.2015.10.006_bib67
  article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.09.024
– year: 1988
  ident: 10.1016/j.cageo.2015.10.006_bib38
– start-page: 381
  year: 2003
  ident: 10.1016/j.cageo.2015.10.006_bib46
– volume: 189
  start-page: 1183
  year: 2012
  ident: 10.1016/j.cageo.2015.10.006_bib45
  article-title: Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2012.05429.x
– year: 2015
  ident: 10.1016/j.cageo.2015.10.006_bib59
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Sci. China Earth Sci.
– volume: 23
  start-page: 195
  year: 2014
  ident: 10.1016/j.cageo.2015.10.006_bib35
  article-title: Cu- and Zn-soil anomalies in the NE border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-013-9217-5
– start-page: 398
  year: 1994
  ident: 10.1016/j.cageo.2015.10.006_bib7
– volume: 57
  start-page: 53
  year: 2014
  ident: 10.1016/j.cageo.2015.10.006_bib56
  article-title: Sr–Nd–Pb isotope systematics of magnetite: implications for the genesis of Makeng Fe deposit, southern China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2013.09.009
– start-page: 1
  year: 1990
  ident: 10.1016/j.cageo.2015.10.006_bib1
  article-title: Statistical pattern integration for mineral exploration
– volume: 32
  start-page: 271
  year: 2000
  ident: 10.1016/j.cageo.2015.10.006_bib3
  article-title: Logratio analysis and compositional distance
  publication-title: Math. Geol.
  doi: 10.1023/A:1007529726302
– volume: 35
  start-page: 279
  year: 2003
  ident: 10.1016/j.cageo.2015.10.006_bib17
  article-title: Isometric logratio transformations for compositional data analysis
  publication-title: Math. Geol.
  doi: 10.1023/A:1023818214614
– volume: 7
  start-page: 415
  year: 1975
  ident: 10.1016/j.cageo.2015.10.006_bib22
  article-title: Exploration geochemistry distribution of elements and recognition of anomalies
  publication-title: Math. Geol.
  doi: 10.1007/BF02080498
– volume: 9
  start-page: 43
  year: 2000
  ident: 10.1016/j.cageo.2015.10.006_bib16
  article-title: Integrated spatial and spectrum method for geochemical anomaly separation
  publication-title: Nat. Resour. Res.
  doi: 10.1023/A:1010109829861
– volume: 40
  start-page: 233
  year: 2008
  ident: 10.1016/j.cageo.2015.10.006_bib18
  article-title: Outlier detection for compositional data using robust methods
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-007-9141-5
– volume: 39
  start-page: 1001
  year: 2000
  ident: 10.1016/j.cageo.2015.10.006_bib37
  article-title: Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data
  publication-title: Environ. Geol.
  doi: 10.1007/s002549900081
– volume: 27
  start-page: 329
  year: 2008
  ident: 10.1016/j.cageo.2015.10.006_bib52
  article-title: SHRIMP zircon U–Pb dating of quartz porphyry from Zhongjia tin–polymetallic deposit in Longyan area, Fujian province, and its geological significance
  publication-title: Miner. Depos.
– volume: 10
  start-page: 365
  year: 2010
  ident: 10.1016/j.cageo.2015.10.006_bib8
  article-title: Catchment basin modelling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/09-224
– volume: 7
  start-page: 1
  year: 1983
  ident: 10.1016/j.cageo.2015.10.006_bib25
  article-title: Geological and geochemical features of submarine volcanic hydrothermal-sedimentary mineralization of Makeng iron deposit, Fujian Province
  publication-title: Bull. Inst. Miner. Deposits Chin. Acad. Geol. Sci.
– volume: 20
  start-page: 621
  year: 2009
  ident: 10.1016/j.cageo.2015.10.006_bib19
  article-title: Principal component analysis for compositional data with outliers
  publication-title: Environmetrics
  doi: 10.1002/env.966
– volume: 104
  start-page: 663
  year: 2015
  ident: 10.1016/j.cageo.2015.10.006_bib57
  article-title: The mineralization age of the Makeng Fe deposit, South China: implications from U–Pb and Sm–Nd geochronology
  publication-title: Int. J. Earth Sci.
  doi: 10.1007/s00531-014-1096-4
– ident: 10.1016/j.cageo.2015.10.006_bib39
  doi: 10.1109/ACPR.2013.37
– volume: 110
  start-page: 167
  year: 2011
  ident: 10.1016/j.cageo.2015.10.006_bib9
  article-title: Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2011.05.007
– volume: 155
  start-page: 84
  year: 2015
  ident: 10.1016/j.cageo.2015.10.006_bib47
  article-title: A comparative study of trend surface analysis and spectrum-area multifractal model to identify geochemical anomalies
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.04.013
SSID ssj0002285
Score 2.562533
Snippet In this paper, we train an autoencoder network to encode and reconstruct a geochemical sample population with unknown complex multivariate probability...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms Anomalies
Autoencoder network
case studies
China
computers
Deposition
Errors
Geochemical exploration
Geochemistry
iron
learning
Mineralization
Multivariate geochemical data
Networks
probability
probability distribution
Reconstruction
Skarn-type iron deposits
Training
Title Recognition of geochemical anomalies using a deep autoencoder network
URI https://dx.doi.org/10.1016/j.cageo.2015.10.006
https://www.proquest.com/docview/1778043309
https://www.proquest.com/docview/2116885868
Volume 86
WOSCitedRecordID wos000366770500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLagA4kXxFWMm4LEnkqm2o5j53GClouqglAnhafoJHG2TpCUtUHj33Mc21kEbBoPvESV5Vx6Psfn8_HJdwh5GXMteFWosErUJIyEyENgMgllxVkBDMrIquvP5WKh0jT55CoVbrpyArKu1dlZsv6vUGMbgm0-nf0HuPuLYgP-RtDxiLDj8UrAf_YpQZYJHmlTE8uLAjTfkHfrzbjtQgQwLrVej6HdNkbP0shK1DYtfMhZfeGHTTdM8HrOa_ZsPF25vN4vq-N21Yei28biZwKizj-68AIdhhfclJmo0MhyDadMFY_X-1KEtm6Qm_tsBRTvRdlf52cbKjjBtfdR9-klFfs2t-7cHfkt-MXHbHY4n2fLabrc47P199CUCjNb6nv8jYXtOtlhUiRqRHYO3k_TD70LZkwJL5Zqnt3LTXWJfX_c-yJK8ptz7hjH8g657ZYKwYGF-C65put75ObbrhTzz_tkOgA6aKpgAHTQAx10QAcQGKCDAdCBA_oBOZxNl6_fha4oRghIZbdhwaOKVsiacaEKgoLEv5rHoKNcy6jiE-C4oFWFQM4BVCimuRIQlZAooQoJOX9IRnVT60ckYDynUMaqKkUZQcQg4UXB41iWCgRQukuYt0tWOMV4U7jka-ZTA0-yzpiZMaZpRGPuklf9SWsrmHJ599gbPHOj13K5DIfM5Se-8PBkOCOabS6oddNuMiqNqBbnk-TiPozSWKFFYvX4Cn2ekFvnr8ZTMtqetvoZuVH82K42p8_d4PsFYVaN1A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+geochemical+anomalies+using+a+deep+autoencoder+network&rft.jtitle=Computers+%26+geosciences&rft.au=Xiong%2C+Yihui&rft.au=Zuo%2C+Renguang&rft.date=2016-01-01&rft.issn=0098-3004&rft.volume=86+p.75-82&rft.spage=75&rft.epage=82&rft_id=info:doi/10.1016%2Fj.cageo.2015.10.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon