Agent-Based Modeling and Genetic Algorithm Simulation for the Climate Game Problem

The cooperative game of global temperature lacks automaticity and emotional jamming. To solve this issue, an agent-based modelling method is developed based on Milinski’s noncooperative game experiments. In addition, genetic algorithm is used to improve the investment strategy of each agent. Simulat...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical Problems in Engineering Vol. 2012; no. 2012; pp. 1204 - 1217-476
Main Authors: Wang, Zheng, Zhang, Jingling
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Limiteds 01.01.2012
Hindawi Publishing Corporation
John Wiley & Sons, Inc
Subjects:
ISSN:1024-123X, 1563-5147
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cooperative game of global temperature lacks automaticity and emotional jamming. To solve this issue, an agent-based modelling method is developed based on Milinski’s noncooperative game experiments. In addition, genetic algorithm is used to improve the investment strategy of each agent. Simulations are carried out by designing different coding schemes, mutation schemes, and fitness functions. It is demonstrated that the method can achieve maximum benefits under the premise of the agent non-cooperative game through encouraging optimal individuals. The results provide a sound basis for developing tools and methods to support the simulation of climate game strategy that involves multiple stakeholders.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1563-5147
DOI:10.1155/2012/709473