Bayesian Deep Learning for Spatial Interpolation in the Presence of Auxiliary Information

Earth scientists increasingly deal with ‘big data’. For spatial interpolation tasks, variants of kriging have long been regarded as the established geostatistical methods. However, kriging and its variants (such as regression kriging, in which auxiliary variables or derivatives of these are included...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geosciences Jg. 54; H. 3; S. 507 - 531
Hauptverfasser: Kirkwood, Charlie, Economou, Theo, Pugeault, Nicolas, Odbert, Henry
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
Springer Nature B.V
Schlagworte:
ISSN:1874-8961, 1874-8953
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!