Graphene-Enabled Silver Nanoantenna Sensors

Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver’s tendency to tarnish and roughen, forming Ag2S on its surface, dramatically diminishing optical properties and rendering it unrelia...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 12; no. 8; pp. 4090 - 4094
Main Authors: Reed, Jason C, Zhu, Hai, Zhu, Alexander Y, Li, Chen, Cubukcu, Ertugrul
Format: Journal Article
Language:English
Published: Washington, DC American Chemical Society 08.08.2012
Subjects:
ISSN:1530-6984, 1530-6992, 1530-6992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver’s tendency to tarnish and roughen, forming Ag2S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag2S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag–Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications.
AbstractList Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver's tendency to tarnish and roughen, forming Ag(2)S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag(2)S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag-Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications.
Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver’s tendency to tarnish and roughen, forming Ag2S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag2S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag–Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications.
Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver's tendency to tarnish and roughen, forming Ag sub(2)S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag sub(2)S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag-Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications.
Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver's tendency to tarnish and roughen, forming Ag(2)S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag(2)S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag-Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications.Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver's tendency to tarnish and roughen, forming Ag(2)S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag(2)S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag-Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications.
Author Li, Chen
Zhu, Hai
Zhu, Alexander Y
Cubukcu, Ertugrul
Reed, Jason C
AuthorAffiliation University of Pennsylvania
AuthorAffiliation_xml – name: University of Pennsylvania
Author_xml – sequence: 1
  givenname: Jason C
  surname: Reed
  fullname: Reed, Jason C
– sequence: 2
  givenname: Hai
  surname: Zhu
  fullname: Zhu, Hai
– sequence: 3
  givenname: Alexander Y
  surname: Zhu
  fullname: Zhu, Alexander Y
– sequence: 4
  givenname: Chen
  surname: Li
  fullname: Li, Chen
– sequence: 5
  givenname: Ertugrul
  surname: Cubukcu
  fullname: Cubukcu, Ertugrul
  email: cubukcu@seas.upenn.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26224789$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22793868$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtLw0AQAOBFKvahB_-A9CIoEju7m2R3j1JqFYoequcwSSaYkm7qbir4703pQ5CCl9k5fDOzzPRZx9aWGLvkcM9B8JGtJPAoipoT1uORhCA2RnQOuQ67rO_9AgCMjOCMdYVQRupY99jd1OHqgywFE4tpRflwXlZf5IYvaGu0DVmLwzlZXzt_zk4LrDxd7N4Be3-cvI2fgtnr9Hn8MAtQKt0EJhQFj2OtQ4mkQCKkUREZIBUZoQpQpHISKDLSEsIcOMmMF9oQh9TIUMgBu9n2Xbn6c02-SZalz6iq0FK99glXsYCwHaP-pyCFNpvY0qsdXadLypOVK5fovpP9LlpwvQPoM6wKhzYr_a-LhQiVNq0bbV3mau8dFUlWNtiUtW0cllU7M9lcJTlcpa24_VOxb3rM7n6BmU8W9drZdtVH3A-h3ZTD
CitedBy_id crossref_primary_10_1080_00107514_2013_850788
crossref_primary_10_1063_1_4921796
crossref_primary_10_1002_ange_201809258
crossref_primary_10_1007_s11356_017_0481_5
crossref_primary_10_1007_s10853_018_2998_5
crossref_primary_10_1039_c3cp43896a
crossref_primary_10_1039_c3cp51952j
crossref_primary_10_1002_adom_201200053
crossref_primary_10_1007_s12668_014_0130_0
crossref_primary_10_1002_jrs_5932
crossref_primary_10_1155_2015_975043
crossref_primary_10_1039_C5CP06121K
crossref_primary_10_1002_pssr_201308159
crossref_primary_10_1016_j_actamat_2015_12_029
crossref_primary_10_1080_09500340_2015_1100340
crossref_primary_10_1016_j_carbon_2013_11_052
crossref_primary_10_3390_molecules26082165
crossref_primary_10_1002_adom_201800548
crossref_primary_10_3390_molecules26154651
crossref_primary_10_1016_j_optcom_2020_126482
crossref_primary_10_1007_s11051_013_1727_x
crossref_primary_10_1016_j_mser_2013_09_001
crossref_primary_10_1002_adfm_201501156
crossref_primary_10_1021_ja507368z
crossref_primary_10_1039_D3RA07018B
crossref_primary_10_1007_s00339_023_07038_6
crossref_primary_10_1063_1_4956437
crossref_primary_10_1002_smll_201700044
crossref_primary_10_1007_s11468_017_0623_0
crossref_primary_10_1186_1556_276X_8_32
crossref_primary_10_1002_adma_201904532
crossref_primary_10_1016_j_photonics_2023_101153
crossref_primary_10_3390_nano12142473
crossref_primary_10_1080_02670836_2017_1410368
crossref_primary_10_1007_s11468_013_9649_0
crossref_primary_10_1080_09500340_2014_928378
crossref_primary_10_1088_0957_4484_26_49_495701
crossref_primary_10_1515_nanoph_2019_0392
crossref_primary_10_1038_lsa_2015_115
crossref_primary_10_1088_1757_899X_783_1_012023
crossref_primary_10_1016_j_matpr_2020_03_244
crossref_primary_10_1007_s42452_024_06161_0
crossref_primary_10_1002_admi_201900427
crossref_primary_10_1186_1556_276X_8_295
crossref_primary_10_1380_ejssnt_2025_026
crossref_primary_10_1002_anie_201809258
crossref_primary_10_1557_adv_2017_621
crossref_primary_10_1016_j_bios_2019_111324
crossref_primary_10_1016_j_inoche_2016_03_011
crossref_primary_10_1557_mrc_2019_162
crossref_primary_10_3390_ma13204660
crossref_primary_10_1002_smll_201800871
crossref_primary_10_3390_s21165262
crossref_primary_10_1002_adfm_202302265
crossref_primary_10_1088_0022_3727_47_38_385102
crossref_primary_10_1364_JOSAB_32_000721
crossref_primary_10_1002_admi_202001227
crossref_primary_10_1109_JLT_2017_2751674
crossref_primary_10_3390_mi15040502
crossref_primary_10_1007_s11082_021_03228_9
crossref_primary_10_1016_j_carbon_2018_02_068
crossref_primary_10_1016_j_trac_2016_10_004
crossref_primary_10_1002_adfm_201303135
crossref_primary_10_1007_s11468_025_02910_y
crossref_primary_10_1016_j_photonics_2022_101016
crossref_primary_10_1002_smll_201401549
crossref_primary_10_1515_joc_2022_0162
crossref_primary_10_1364_JOSAB_36_000435
crossref_primary_10_1002_adfm_201303384
crossref_primary_10_1039_C4CC07937J
crossref_primary_10_1107_S2052252522002901
crossref_primary_10_1016_j_optlastec_2013_12_019
crossref_primary_10_1002_adom_201600201
crossref_primary_10_1103_PhysRevApplied_4_024007
crossref_primary_10_1002_adom_201900905
crossref_primary_10_1088_2053_1591_ab6c90
crossref_primary_10_1039_D2NR03005E
crossref_primary_10_1002_adom_201801433
crossref_primary_10_1557_mre_2014_6
crossref_primary_10_1063_1_4929880
crossref_primary_10_1088_1361_6528_ab5cde
crossref_primary_10_1007_s11051_021_05291_5
crossref_primary_10_1016_j_spmi_2016_08_029
crossref_primary_10_3390_s19040862
crossref_primary_10_3390_nano11071736
crossref_primary_10_1063_1_4867167
crossref_primary_10_1038_ncomms6259
crossref_primary_10_1002_admt_201800014
crossref_primary_10_1007_s11051_023_05910_3
crossref_primary_10_1038_srep17167
crossref_primary_10_1016_j_carbon_2016_05_053
crossref_primary_10_3390_s20051401
crossref_primary_10_1007_s12633_018_9854_8
crossref_primary_10_1016_j_carbon_2013_09_076
crossref_primary_10_1186_s11671_017_2009_9
crossref_primary_10_3390_s24155058
crossref_primary_10_1364_AO_472979
crossref_primary_10_1109_JLT_2020_3038070
crossref_primary_10_1088_2053_1583_2_3_032005
crossref_primary_10_1016_j_snb_2020_129373
crossref_primary_10_1007_s11468_019_01071_z
crossref_primary_10_1016_j_vacuum_2020_109497
crossref_primary_10_1063_1_4914524
crossref_primary_10_1016_j_spmi_2018_09_034
crossref_primary_10_1088_2053_1591_ad194a
crossref_primary_10_1002_adom_201701043
crossref_primary_10_1063_1_4772542
crossref_primary_10_1039_C6CP05107C
crossref_primary_10_1063_1_4773474
crossref_primary_10_1007_s11468_015_0132_y
crossref_primary_10_3390_bios12010042
crossref_primary_10_1016_j_carbon_2013_10_030
crossref_primary_10_1002_adom_202300401
crossref_primary_10_1002_adma_201805043
crossref_primary_10_1002_adom_201300133
crossref_primary_10_1016_j_snb_2015_02_113
crossref_primary_10_1088_0957_4484_26_12_125603
Cites_doi 10.1021/jp8098126
10.1016/j.matlet.2009.07.052
10.1021/cm051532n
10.1021/nl071254m
10.1021/jp002435e
10.1073/pnas.0907459106
10.1364/OE.19.000458
10.1364/JOSA.60.000224
10.1021/nl801457b
10.1021/nl061420a
10.1126/science.275.5303.1102
10.1364/JOSAB.3.001647
10.1021/ja020393x
10.1038/nmat1849
10.1039/C1NR11368B
10.1021/nl902623y
10.1021/nl802558y
10.1002/cphc.200900743
10.1103/PhysRevE.62.4318
10.1038/nmat3207
10.1039/C1CC15694B
10.1364/OE.19.010640
10.1021/jp026731y
10.1016/j.tsf.2004.09.059
10.1063/1.3021413
10.1126/science.1136836
10.1364/OE.18.008353
10.1021/ja205693t
10.1063/1.2974096
10.1007/s00340-005-1793-6
10.1103/PhysRevLett.100.206803
10.1126/science.1174655
10.1038/nature07719
10.1021/nl103994w
10.1002/lpor.200900055
10.1021/nn202815k
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/nl301555t
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1530-6992
EndPage 4094
ExternalDocumentID 22793868
26224789
10_1021_nl301555t
b324603000
Genre Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AFFNX
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a378t-942f1668843ae703a0b5f590e75927f07e7de2a2ce8304d01e3c1f89e10b93423
IEDL.DBID ACS
ISICitedReferencesCount 169
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307211000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-6984
1530-6992
IngestDate Thu Oct 02 10:54:00 EDT 2025
Fri Jul 11 12:22:02 EDT 2025
Mon Jul 21 06:05:18 EDT 2025
Mon Jul 21 09:13:21 EDT 2025
Sat Nov 29 01:49:11 EST 2025
Tue Nov 18 21:12:19 EST 2025
Thu Aug 27 13:42:22 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords nanoantennas
silver
Plasmonics
sulfidation
graphene
LSPR sensor
Damping
Gold
Nanostructures
Silver sulfide
Surface plasmons
Nanoelectronics
Silver
Nanometer scale
Graphene
Experimental design
Optical properties
Monolayers
Sensors
Sulfur
Nanoantenna
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a378t-942f1668843ae703a0b5f590e75927f07e7de2a2ce8304d01e3c1f89e10b93423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22793868
PQID 1032891032
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1762049427
proquest_miscellaneous_1032891032
pubmed_primary_22793868
pascalfrancis_primary_26224789
crossref_citationtrail_10_1021_nl301555t
crossref_primary_10_1021_nl301555t
acs_journals_10_1021_nl301555t
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2012-08-08
PublicationDateYYYYMMDD 2012-08-08
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-08
  day: 08
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Huang T. (ref11/cit11) 2012; 4
Chen S. (ref25/cit25) 2012; 11
Gray A. (ref29/cit29) 2008; 104
Choi S. H. (ref31/cit31) 2011; 19
Jensen T. R. (ref1/cit1) 2000; 104
Wang L. (ref14/cit14) 2011; 19
Barrios C. A. (ref16/cit16) 2009; 113
Li X. (ref26/cit26) 2009; 9
Nagpal P. (ref13/cit13) 2009; 325
McMahon M. (ref9/cit9) 2005; 80
Xu H. (ref2/cit2) 2000; 62
Haes A. J. (ref3/cit3) 2002; 124
Stoller M. D. (ref21/cit21) 2008; 8
Kim K. S. (ref22/cit22) 2009; 457
Han T. H. (ref34/cit34) 2011; 133
Pryce I. M. (ref6/cit6) 2011; 5
Elechiguerra J. L. (ref12/cit12) 2005; 17
Geim A. K. (ref18/cit18) 2007; 6
Papasimakis N. (ref33/cit33) 2010; 18
Gupta A. (ref28/cit28) 2006; 6
Nie S. (ref5/cit5) 1997; 275
Wang X. (ref19/cit19) 2008; 100
Bunch J. S. (ref20/cit20) 2007; 315
Li F. (ref35/cit35) 2012; 48
Palik E. D. (ref30/cit30) 1985
Cao W. (ref10/cit10) 2009; 63
Hall W. P. (ref17/cit17) 2011; 11
Bennett J. M. (ref37/cit37) 1970; 60
Bunch J. S. (ref24/cit24) 2008; 8
West P. R. (ref8/cit8) 2010; 4
Song B. (ref32/cit32) 2010; 11
Kelly K. L. (ref36/cit36) 2002; 107
Leenaerts O. (ref23/cit23) 2008; 93
Ni Z. H. (ref27/cit27) 2007; 7
Hache F. (ref4/cit4) 1986; 3
Park Y.-i. (ref15/cit15) 2005; 476
Adato R. (ref7/cit7) 2009; 106
References_xml – volume: 113
  start-page: 8158
  issue: 19
  year: 2009
  ident: ref16/cit16
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8098126
– volume: 63
  start-page: 2263
  issue: 26
  year: 2009
  ident: ref10/cit10
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.07.052
– volume: 17
  start-page: 6042
  issue: 24
  year: 2005
  ident: ref12/cit12
  publication-title: Chem. Mater.
  doi: 10.1021/cm051532n
– volume: 7
  start-page: 2758
  issue: 9
  year: 2007
  ident: ref27/cit27
  publication-title: Nano Lett.
  doi: 10.1021/nl071254m
– volume: 104
  start-page: 10549
  issue: 45
  year: 2000
  ident: ref1/cit1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp002435e
– volume: 106
  start-page: 19227
  issue: 46
  year: 2009
  ident: ref7/cit7
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0907459106
– volume: 19
  start-page: 458
  issue: 2
  year: 2011
  ident: ref31/cit31
  publication-title: Opt. Express
  doi: 10.1364/OE.19.000458
– volume: 60
  start-page: 224
  issue: 2
  year: 1970
  ident: ref37/cit37
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.60.000224
– volume: 8
  start-page: 2458
  issue: 8
  year: 2008
  ident: ref24/cit24
  publication-title: Nano Lett.
  doi: 10.1021/nl801457b
– volume: 6
  start-page: 2667
  issue: 12
  year: 2006
  ident: ref28/cit28
  publication-title: . Nano Lett.
  doi: 10.1021/nl061420a
– volume: 275
  start-page: 1102
  issue: 5303
  year: 1997
  ident: ref5/cit5
  publication-title: Science
  doi: 10.1126/science.275.5303.1102
– volume: 3
  start-page: 1647
  issue: 12
  year: 1986
  ident: ref4/cit4
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.3.001647
– volume: 124
  start-page: 10596
  issue: 35
  year: 2002
  ident: ref3/cit3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja020393x
– volume: 6
  start-page: 183
  issue: 3
  year: 2007
  ident: ref18/cit18
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 4
  start-page: 380
  issue: 2
  year: 2012
  ident: ref11/cit11
  publication-title: Nanoscale
  doi: 10.1039/C1NR11368B
– volume: 9
  start-page: 4359
  issue: 12
  year: 2009
  ident: ref26/cit26
  publication-title: Nano Lett.
  doi: 10.1021/nl902623y
– volume: 8
  start-page: 3498
  issue: 10
  year: 2008
  ident: ref21/cit21
  publication-title: Nano Lett.
  doi: 10.1021/nl802558y
– volume: 11
  start-page: 585
  issue: 3
  year: 2010
  ident: ref32/cit32
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200900743
– volume: 62
  start-page: 4318
  issue: 3
  year: 2000
  ident: ref2/cit2
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.4318
– volume: 11
  start-page: 203
  issue: 3
  year: 2012
  ident: ref25/cit25
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3207
– volume: 48
  start-page: 127
  issue: 1
  year: 2012
  ident: ref35/cit35
  publication-title: Chem. Commun.
  doi: 10.1039/C1CC15694B
– volume: 19
  start-page: 10640
  issue: 11
  year: 2011
  ident: ref14/cit14
  publication-title: Opt. Express
  doi: 10.1364/OE.19.010640
– volume: 107
  start-page: 668
  issue: 3
  year: 2002
  ident: ref36/cit36
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp026731y
– volume: 476
  start-page: 168
  issue: 1
  year: 2005
  ident: ref15/cit15
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.09.059
– volume: 93
  start-page: 193107
  issue: 19
  year: 2008
  ident: ref23/cit23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3021413
– volume-title: Handbook of Optical Constants of Solids
  year: 1985
  ident: ref30/cit30
– volume: 315
  start-page: 490
  issue: 5811
  year: 2007
  ident: ref20/cit20
  publication-title: Science
  doi: 10.1126/science.1136836
– volume: 18
  start-page: 8353
  issue: 8
  year: 2010
  ident: ref33/cit33
  publication-title: Opt. Express
  doi: 10.1364/OE.18.008353
– volume: 133
  start-page: 15264
  issue: 39
  year: 2011
  ident: ref34/cit34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205693t
– volume: 104
  start-page: 053109
  issue: 5
  year: 2008
  ident: ref29/cit29
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2974096
– volume: 80
  start-page: 915
  issue: 7
  year: 2005
  ident: ref9/cit9
  publication-title: Appl. Phys. B: Lasers Opt.
  doi: 10.1007/s00340-005-1793-6
– volume: 100
  start-page: 206803
  issue: 20
  year: 2008
  ident: ref19/cit19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.206803
– volume: 325
  start-page: 594
  issue: 5940
  year: 2009
  ident: ref13/cit13
  publication-title: Science
  doi: 10.1126/science.1174655
– volume: 457
  start-page: 706
  issue: 7230
  year: 2009
  ident: ref22/cit22
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 11
  start-page: 1098
  issue: 3
  year: 2011
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl103994w
– volume: 4
  start-page: 795
  issue: 6
  year: 2010
  ident: ref8/cit8
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.200900055
– volume: 5
  start-page: 8167
  issue: 10
  year: 2011
  ident: ref6/cit6
  publication-title: ACS Nano
  doi: 10.1021/nn202815k
SSID ssj0009350
Score 2.4949458
Snippet Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4090
SubjectTerms Applied sciences
Atmospherics
Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science; rheology
Devices
Durability
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronics
Exact sciences and technology
Fullerenes and related materials; diamonds, graphite
General equipment and techniques
Graphene
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Materials science
Molecular electronics, nanoelectronics
Nanostructure
Optical properties
Physics
Plasmonics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing
Silver
Specific materials
Sulfur
Surface and interface electron states
Title Graphene-Enabled Silver Nanoantenna Sensors
URI http://dx.doi.org/10.1021/nl301555t
https://www.ncbi.nlm.nih.gov/pubmed/22793868
https://www.proquest.com/docview/1032891032
https://www.proquest.com/docview/1762049427
Volume 12
WOSCitedRecordID wos000307211000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society (ACS) Journals
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDBZtt8PG2PvRPUr2OAxGmO04sXMspd0Oowy6jd6C6zhQKGlp2v3-yekb2m2XkIOc2JJlSUj-BPAQKKqljI2Ltk-73NfEVQm-SaqIx2PDTY7E9PUmmk3ZbofvBbjfkMFn9Dntedau-6MibDF0b23dXrXWWiDrenkbVtRcjINCyWfwQctDrenR2Yrp2RuoDLmQTNpXbPYvczvTOPjXDA9hf-pGOtWJ3I-gYNJj2F0CFzyBpxeLRY1HmVvP70fFTqtry6AdPFD7lp9pqpwWRrH9YXYKn436R-3VnbZGcJUn5MgNOUtoEEjJPWVQaRXp-IkfEiP8kImECCNiwxTTRnqEx4QaT9NEhoaSTmhB_86glPZTcwEOo7pjeJwIoSnHIegx4qeotkhxuiNIGSrIu2i6tbMoz1ozGs1XXYbHGVsjPQUWt_0teutI7-akgwmaxjqiyops5pQsQH9DyLAMtzNhRagMNsOhUtMf27l5GEDa5y80wkLwIwNFGc4nkl78geFxJQN5-dear2AHPSeWVwLKayiNhmNzA9v6e9TNhhUoiras5Nv0B7Rh3DI
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFFTE-2VeZhUfBCkmadqkj0O84RzCVPZW0jSFgXSybv5-T7ruIkzFl5KHk_TkJOdGku8AnAeKaikT46Lv0y73NXFVii1JFfF4YrgpkJjeGqLZlO12-FzC5Ni3MMhEjiPlxSH-BF2AXmXvnnXvfn8eFnx0q7ZaQf26NQHY9YpqrKjAmA6Fko9QhKa7Wg-k828eaPVD5SiMdFjF4ucws3A3t-v_YXQD1sqg0qkPd8EmzJlsC1amoAa34fLOIlOjYXNvitdSidPq2EvRDprXrpVulimnhTltt5fvwOvtzcv1vVsWSnCVJ2TfDTlLaRBIyT1lUIUVif3UD4kRfshESoQRiWGKaSM9whNCjadpKkNDSRxaCMBdqGTdzOyDw6iODU9SITTl2AXjRxyKaosbp2NBqlDDSUflRs-j4gyb0Wg86ypcjKQb6RJm3Fa7eJ9FejYm_Rhia8wiqn1bojElCzD6EDKswulozSJUDXveoTLTHVjePEwn7fcXGmEB-VGAogp7wwWf_IGh8ZKBPPhrziewdP_y1IgaD83HQ1jGmIoVdwTlEVT6vYE5hkX92e_kvVqxZ78A1mfjsA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwED98IYr4fszHrOIHQYpJmjbpR5lOxTGEqexbydIUBtKNtfr3e2m76cAHfin5cElzl1zujkt-B3AWKKqljI2Ltk-73NfEVQm2JFXE47HhpkBiemmJdlt2u-FjFSjatzA4iQxHyookvtXqYZxUCAP0Mn31rIn381mY99GQ24oFV43OJ8iuV1RkRSXGkCiUfIwk9LWrtUI6m7JCK0OVoUCSspLFz65mYXKaa_-d7DqsVs6lc1Xuhg2YMekmLH-BHNyCi1uLUI0HnHtTvJqKnU7fXo528JgdWCmnqXI6GNsORtk2PDdvnhp3blUwwVWekLkbcpbQIJCSe8qgKivS8xM_JEb4IRMJEUbEhimmjfQIjwk1nqaJDA0lvdBCAe7AXDpIzR44jOqe4XEihKYcu6AfiUNRbfHjdE-QGtSR8aja8FlU5LIZjSZc1-B8LOFIV3DjturF63ekpxPSYYmx8R1RfWqZJpQsQC9EyLAGJ-N1i1BFbN5DpWbwZufmYVhpv7_QCAvMjwIUNdgtF_3zDwwPMRnI_b94PobFx-tm1LpvPxzAErpWrLgqKA9hLh-9mSNY0O95PxvVi237AV555io
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-Enabled+Silver+Nanoantenna+Sensors&rft.jtitle=Nano+letters&rft.au=Reed%2C+Jason+C&rft.au=Zhu%2C+Hai&rft.au=Zhu%2C+Alexander+Y&rft.au=Li%2C+Chen&rft.date=2012-08-08&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=12&rft.issue=8&rft.spage=4090&rft.epage=4094-4090-4094&rft_id=info:doi/10.1021%2Fnl301555t&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon