Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space

We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative ergodic theorem. Then, we use this theorem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lian, Zeng, Lu, Kening
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Providence, Rhode Island American Mathematical Society 2010
Ausgabe:1
Schriftenreihe:Memoirs of the American Mathematical Society
Schlagworte:
ISBN:0821846566, 9780821846568
ISSN:0065-9266, 1947-6221
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative ergodic theorem. Then, we use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random invariant sets.
Bibliographie:Volume 206, number 967 (first of 4 numbers).
Includes bibliographical references (p. 105-106)
ISBN:0821846566
9780821846568
ISSN:0065-9266
1947-6221
DOI:10.1090/S0065-9266-10-00574-0