Parameterized Complexity of Elimination Distance to First-Order Logic Properties

The elimination distance to some target graph property {\mathcal{P}} is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the problem's fixed-parameter tractabili...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 1 - 13
Main Authors: Fomin, Fedor V., Golovach, Petr A., Thilikos, Dimitrios M.
Format: Conference Proceeding
Language:English
Published: IEEE 29.06.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The elimination distance to some target graph property {\mathcal{P}} is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the problem's fixed-parameter tractability by identifying sufficient and necessary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following meta-theorem: For every graph property {\mathcal{P}} expressible by a first order-logic formula φ ∈ Σ 3 , that is, of the form\begin{equation*}\varphi = \exists {x_1}\exists {x_2} \cdots \exists {x_r}\forall {y_1}\forall {y_2} \cdots \forall {y_s}\quad \exists {z_1}\exists {z_2} \cdots \exists {z_t}\,\psi ,\end{equation*}where ψ is a quantifier-free first-order formula, checking whether the elimination distance of a graph to {\mathcal{P}} does not exceed k, is fixed-parameter tractable parameterized by k. Properties of graphs expressible by formulas from Σ 3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded dominating set. We complement this theorem by showing that such a general statement does not hold for formulas with even slightly more expressive prefix structure: There are formulas φ ∈ Π 3 , for which computing elimination distance is W[2]-hard.
AbstractList The elimination distance to some target graph property {\mathcal{P}} is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the problem's fixed-parameter tractability by identifying sufficient and necessary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following meta-theorem: For every graph property {\mathcal{P}} expressible by a first order-logic formula φ ∈ Σ 3 , that is, of the form\begin{equation*}\varphi = \exists {x_1}\exists {x_2} \cdots \exists {x_r}\forall {y_1}\forall {y_2} \cdots \forall {y_s}\quad \exists {z_1}\exists {z_2} \cdots \exists {z_t}\,\psi ,\end{equation*}where ψ is a quantifier-free first-order formula, checking whether the elimination distance of a graph to {\mathcal{P}} does not exceed k, is fixed-parameter tractable parameterized by k. Properties of graphs expressible by formulas from Σ 3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded dominating set. We complement this theorem by showing that such a general statement does not hold for formulas with even slightly more expressive prefix structure: There are formulas φ ∈ Π 3 , for which computing elimination distance is W[2]-hard.
Author Thilikos, Dimitrios M.
Golovach, Petr A.
Fomin, Fedor V.
Author_xml – sequence: 1
  givenname: Fedor V.
  surname: Fomin
  fullname: Fomin, Fedor V.
  email: fedor.fomin@uib.no
  organization: University of Bergen,Department of Informatics,Bergen,Norway
– sequence: 2
  givenname: Petr A.
  surname: Golovach
  fullname: Golovach, Petr A.
  email: petr.golovach@uib.no
  organization: University of Bergen,Department of Informatics,Bergen,Norway
– sequence: 3
  givenname: Dimitrios M.
  surname: Thilikos
  fullname: Thilikos, Dimitrios M.
  email: sedthilk@thilikos.info
  organization: Université de Montpellier,AlGCo project team, CNRS, LIRMM,Montpellier,France
BookMark eNotz81KxDAUQOEICurYJxAkL9B606b5WUqdGQcKU1DXQ5reSKRtSpqF49O7cFZn98G5J9dzmJGQJwYFY6Cf20PzXpel4EUJJSs0l1BzuCKZlooJUXOudC1uSbau3wBQKsmA6zvSdSaaCRNG_4sDbcK0jPjj05kGR7ejn_xskg8zffVrMrNFmgLd-bim_BgHjLQNX97SLoYFY_K4PpAbZ8YVs0s35HO3_Wje8va4PzQvbW4qyVI-AEjeG1Sy1lYJacFZB8IJZ1WvJXChVcV5DQ6GcrCml0prZRXrq4FZY6oNefx3PSKelugnE8-ny3f1B2VyUXU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470540
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470540
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a371t-d0074bae8759c867c0fcf06f6fc8b970469834450f0d2dcab78998c81b3d1caa3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a371t-d0074bae8759c867c0fcf06f6fc8b970469834450f0d2dcab78998c81b3d1caa3
OpenAccessLink https://hal.archives-ouvertes.fr/hal-03389854/file/2104.02998.pdf
PageCount 13
ParticipantIDs ieee_primary_9470540
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.198122
Snippet The elimination distance to some target graph property {\mathcal{P}} is a general graph modification parameter introduced by Bulian and Dawar. We initiate the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Complexity theory
Computer science
descriptive complexity
elimination distance
first-order logic
parameterized complexity
Title Parameterized Complexity of Elimination Distance to First-Order Logic Properties
URI https://ieeexplore.ieee.org/document/9470540
WOSCitedRecordID wos000947350400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5a8eCpaiu-2YNH0-ax2ce5tihIDajQW9nszkJBmtKmgv56M2msCF68hZDNwA7LfDP7zXwAN3mqnY-5CLiULuDCuECl6IjToKvoJTFFU4tNyMlETac6a8HtrhcGEWvyGfbpsb7Ld4XdUKlsoLkkhNGGtpRi26u1q6cQ8q_QbtMEHIV68PgwfCZ0QZWTOOo3i3-pqNRBZNz5n_lD6P1047FsF2eOoIWLY-h8yzGw5nR2IcsMMa1o-PInOkYf0LTL8oMVno3eavkucgO7I8xIfy0LNp5X8C94ogGcjHSXLZlaEtka1z14HY9ehvdBI5gQmERGZeAIEOQGqxxEWyWkDb31ofDCW5VrWatFJpynoQ9d7KzJJWVbtkKuiYusMckJ7C2KBZ4C87H2KjYuT2xOKabmmAi6NhbSpUrhGXRpg2bL7UyMWbM353-_voAD8gFRrGJ9CXvlaoNXsG_fy_l6dV078guI4J9E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFPRp6ib-Ng8-2q0_0qZ5nhsbzllwwt5GmlxAkHVsnaB_vb2uTgRffAslaUuOcN9dvrsP4DYNpbE-jxwuhHF4pIwTh2iI0yAL7yUwRFWKTYjxOJ5OZVKDu20tDCKW5DNs07C8yzeZXlOqrCO5IISxA7sh5767qdbaZlQI-xd4tyoD9lzZGQ27z4QvKHfie-1q-S8dldKN9Bv_-4FDaP3U47Fk62mOoIbzY2h8CzKw6nw2IUkUca2o_fInGkYTqN9l_sEyy3pvpYAXGYLdE2qkt-YZ678WANB5ohacjJSXNX1qQXRrXLXgpd-bdAdOJZngqEB4uWMIEqQKiyhE6jgS2rXaupGNrI5TKUq9yIDz0LWu8Y1WqaB4SxfYNTCeVio4gfo8m-MpMOtLG_vKpIFOKciUHIOILo4jYcI4xjNo0gbNFpuuGLNqb87_fnwD-4PJ42g2Go4fLuCA7EGEK19eQj1frvEK9vR7_rpaXpdG_QIATKKL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Parameterized+Complexity+of+Elimination+Distance+to+First-Order+Logic+Properties&rft.au=Fomin%2C+Fedor+V.&rft.au=Golovach%2C+Petr+A.&rft.au=Thilikos%2C+Dimitrios+M.&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470540&rft.externalDocID=9470540