Parameterized Complexity of Elimination Distance to First-Order Logic Properties
The elimination distance to some target graph property {\mathcal{P}} is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the problem's fixed-parameter tractabili...
Saved in:
| Published in: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 1 - 13 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
29.06.2021
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The elimination distance to some target graph property {\mathcal{P}} is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the problem's fixed-parameter tractability by identifying sufficient and necessary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following meta-theorem: For every graph property {\mathcal{P}} expressible by a first order-logic formula φ ∈ Σ 3 , that is, of the form\begin{equation*}\varphi = \exists {x_1}\exists {x_2} \cdots \exists {x_r}\forall {y_1}\forall {y_2} \cdots \forall {y_s}\quad \exists {z_1}\exists {z_2} \cdots \exists {z_t}\,\psi ,\end{equation*}where ψ is a quantifier-free first-order formula, checking whether the elimination distance of a graph to {\mathcal{P}} does not exceed k, is fixed-parameter tractable parameterized by k. Properties of graphs expressible by formulas from Σ 3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded dominating set. We complement this theorem by showing that such a general statement does not hold for formulas with even slightly more expressive prefix structure: There are formulas φ ∈ Π 3 , for which computing elimination distance is W[2]-hard. |
|---|---|
| AbstractList | The elimination distance to some target graph property {\mathcal{P}} is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the problem's fixed-parameter tractability by identifying sufficient and necessary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following meta-theorem: For every graph property {\mathcal{P}} expressible by a first order-logic formula φ ∈ Σ 3 , that is, of the form\begin{equation*}\varphi = \exists {x_1}\exists {x_2} \cdots \exists {x_r}\forall {y_1}\forall {y_2} \cdots \forall {y_s}\quad \exists {z_1}\exists {z_2} \cdots \exists {z_t}\,\psi ,\end{equation*}where ψ is a quantifier-free first-order formula, checking whether the elimination distance of a graph to {\mathcal{P}} does not exceed k, is fixed-parameter tractable parameterized by k. Properties of graphs expressible by formulas from Σ 3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded dominating set. We complement this theorem by showing that such a general statement does not hold for formulas with even slightly more expressive prefix structure: There are formulas φ ∈ Π 3 , for which computing elimination distance is W[2]-hard. |
| Author | Thilikos, Dimitrios M. Golovach, Petr A. Fomin, Fedor V. |
| Author_xml | – sequence: 1 givenname: Fedor V. surname: Fomin fullname: Fomin, Fedor V. email: fedor.fomin@uib.no organization: University of Bergen,Department of Informatics,Bergen,Norway – sequence: 2 givenname: Petr A. surname: Golovach fullname: Golovach, Petr A. email: petr.golovach@uib.no organization: University of Bergen,Department of Informatics,Bergen,Norway – sequence: 3 givenname: Dimitrios M. surname: Thilikos fullname: Thilikos, Dimitrios M. email: sedthilk@thilikos.info organization: Université de Montpellier,AlGCo project team, CNRS, LIRMM,Montpellier,France |
| BookMark | eNotz81KxDAUQOEICurYJxAkL9B606b5WUqdGQcKU1DXQ5reSKRtSpqF49O7cFZn98G5J9dzmJGQJwYFY6Cf20PzXpel4EUJJSs0l1BzuCKZlooJUXOudC1uSbau3wBQKsmA6zvSdSaaCRNG_4sDbcK0jPjj05kGR7ejn_xskg8zffVrMrNFmgLd-bim_BgHjLQNX97SLoYFY_K4PpAbZ8YVs0s35HO3_Wje8va4PzQvbW4qyVI-AEjeG1Sy1lYJacFZB8IJZ1WvJXChVcV5DQ6GcrCml0prZRXrq4FZY6oNefx3PSKelugnE8-ny3f1B2VyUXU |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/LICS52264.2021.9470540 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781665448956 1665448954 |
| EndPage | 13 |
| ExternalDocumentID | 9470540 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIO |
| ID | FETCH-LOGICAL-a371t-d0074bae8759c867c0fcf06f6fc8b970469834450f0d2dcab78998c81b3d1caa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:26:37 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a371t-d0074bae8759c867c0fcf06f6fc8b970469834450f0d2dcab78998c81b3d1caa3 |
| OpenAccessLink | https://hal.archives-ouvertes.fr/hal-03389854/file/2104.02998.pdf |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9470540 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-June-29 |
| PublicationDateYYYYMMDD | 2021-06-29 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-June-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science |
| PublicationTitleAbbrev | LICS |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002871049 |
| Score | 2.1980195 |
| Snippet | The elimination distance to some target graph property {\mathcal{P}} is a general graph modification parameter introduced by Bulian and Dawar. We initiate the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Complexity theory Computer science descriptive complexity elimination distance first-order logic parameterized complexity |
| Title | Parameterized Complexity of Elimination Distance to First-Order Logic Properties |
| URI | https://ieeexplore.ieee.org/document/9470540 |
| WOSCitedRecordID | wos000947350400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eCpaiu-ycGjafeRbjbn2qJQ6oIPeivZZAIF6ZZ2K-ivN7NdK4IXb0vY3UCGZL6ZzHwfwE1klHbW-v2t-paL3MRcCyW4xdQ769igqvKQr2M5maTTqcoacLvrhUHEqvgMu_RY3eXbwmwoVdZTQhLC2IM9KZNtr9Yun0LI36Pdugk4DFRv_DB4InRBmZMo7NYf_1JRqZzIqPW_6Q-h89ONx7KdnzmCBi6OofUtx8Dq3dmGLNNUaUXky59oGb1AbJflByscG75V8l1kBnZHmJH-WhZsNPfwjz8SAScj3WVDUy2p2BrXHXgZDZ8H97wWTOA6lmHJLQGCXKOPQZRJE2kCZ1yQuMSZNFeyUouMhegHLrCRNTqXFG0Zj1xjGxqt4xNoLooFngIjVnwMBDoT5AJ9jIban4Q6ssofCX2TnkGbFmi23HJizOq1Of97-AIOyAZUYhWpS2iWqw1ewb55L-fr1XVlyC9UKKA6 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEL4gmugTKhh_2wcfHZStY-szQiBOXCIa3kjX3hISwwgME_3r7Y2JMfHFt6XZuqWX9r673X0fwK2rpUqNsftb-sYRifYcJaRwDIbWWXsaZZGHfI2C0SicTGRcgbttLwwiFsVn2KTL4l--yfSaUmUtKQJCGDuw6wvh8k231jajQtjf4t2yDbjNZSsadp8JX1DuxG03y8d_6agUbqRf-98HHELjpx-PxVtPcwQVnB9D7VuQgZX7sw5xrKjWiuiXP9EwuoH4LvMPlqWs91YIeJEh2D2hRpo1z1h_ZgGg80QUnIyUlzW9akHl1rhqwEu_N-4OnFIywVFe0M4dQ5AgUWijEKnDTqB5qlPeSTupDhMZFHqRnhA-T7lxjVZJQPGWttjVM22tlHcC1Xk2x1NgxIuPXGCqeSLQRmmo7FmoXCPtoeDr8AzqtEDTxYYVY1quzfnfwzewPxg_RtNoOHq4gAOyBxVcufISqvlyjVewp9_z2Wp5XRj1C9eJo4E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Parameterized+Complexity+of+Elimination+Distance+to+First-Order+Logic+Properties&rft.au=Fomin%2C+Fedor+V.&rft.au=Golovach%2C+Petr+A.&rft.au=Thilikos%2C+Dimitrios+M.&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470540&rft.externalDocID=9470540 |