Total positivity, Gramian matrices, and Schur polynomials

This paper investigated the total positivity of Gramian matrices associated with general bases of functions. It demonstrated that the total positivity of collocation matrices for totally positive bases extends to their Gramian matrices. Additionally, a bidiagonal decomposition of these Gramian matri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 10; číslo 2; s. 2375 - 2391
Hlavní autoři: Díaz, Pablo, Mainar, Esmeralda, Rubio, Beatriz
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.02.2025
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper investigated the total positivity of Gramian matrices associated with general bases of functions. It demonstrated that the total positivity of collocation matrices for totally positive bases extends to their Gramian matrices. Additionally, a bidiagonal decomposition of these Gramian matrices, derived from integrals of symmetric functions, was presented. This decomposition enables the design of algorithms with high relative accuracy for solving linear algebra problems involving totally positive Gramian matrices. For polynomial bases, compact and explicit formulas for the bidiagonal decomposition were provided, involving integrals of Schur polynomials. These integrals, known as Selberg-like integrals, arise naturally in various contexts within Physics and Mathematics.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2025110