NUMERICAL METHODS FOR APPROXIMATING EIGENVALUES OF BOUNDARY VALUE PROBLEMS
This paper describes some new finite difference methods for the approximation of eigenvalues of a two point boundary value problem associated with a fourth order linear differential equation of the type (py")"- (q y')' + (r - λs)y =0. The smallest positive eigenvalue of some typical eigens...
Uloženo v:
| Vydáno v: | International Journal of Mathematics and Mathematical Sciences Ročník 1986; číslo 3; s. 567 - 575 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hindawi Limiteds
1986
Wiley |
| Témata: | |
| ISSN: | 0161-1712, 1687-0425 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper describes some new finite difference methods for the approximation of eigenvalues of a two point boundary value problem associated with a fourth order linear differential equation of the type (py")"- (q y')' + (r - λs)y =0. The smallest positive eigenvalue of some typical eigensystems is computed to demonstrate the practical usefulness of the numerical techniques developed. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0161-1712 1687-0425 |
| DOI: | 10.1155/S0161171286000716 |