Analysis of Training and Seed Bias in Small Molecules Generated with a Conditional Graph-Based Variational Autoencoder─Insights for Practical AI-Driven Molecule Generation

The application of deep learning to generative molecule design has shown early promise for accelerating lead series development. However, questions remain concerning how factors like training, data set, and seed bias impact the technology's utility to medicinal and computational chemists. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling Jg. 62; H. 4; S. 801
Hauptverfasser: Kang, Seung-Gu, Morrone, Joseph A, Weber, Jeffrey K, Cornell, Wendy D
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 28.02.2022
Schlagworte:
ISSN:1549-960X, 1549-960X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!